Claim Missing Document
Check
Articles

Found 15 Documents
Search

Application for data collection and monitoring of COVID-19 patients in Sukorame Community Health Center Cinderatama, Toga Aldila; Alhamri, Rinanza Zulmy; Efendi, Fery Sofian; Eliyen, Kunti; Nugroho, Benni Agung
Matrix : Jurnal Manajemen Teknologi dan Informatika Vol. 12 No. 1 (2022): Matrix: Jurnal Manajemen Teknologi dan Informatika
Publisher : Unit Publikasi Ilmiah, P3M, Politeknik Negeri Bali

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31940/matrix.v12i1.19-30

Abstract

The significant increase in COVID-19 cases in Indonesia in May-July 2021 overwhelmed health workers. One of the efforts to monitor the spread of COViD-19 disease is collecting data on patients and proper monitoring. For example, the Sukorame Community Health Center, Mojoroto Kediri, does not yet have an application to record and monitor COVID-19 patients. Data collection is currently done manually by writing in books and excel. This study designed and built a data collection and monitoring application for COVID-19 patients to help Puskesmas staff obtain more accurate patient data and monitor the related patient data. This study implements the waterfall method, including system requirements, design, implementation, verification, and maintenance. The results of this study are the applications that can help and facilitate Community Health Center in collecting data on COVID-19 as a form of effort in overcoming and preventing the spread of COVID-19 in the work area of Sukorame Community Health Center, Kediri City. Based on the user satisfaction questionnaire results, 75% of users consisting of staff and heads of community health centers were helped by this application.
Pengembangan Pencatatan Laporan Keuangan UMKM Berbasis Teknologi Informasi Andari, Atik Tri; Setianingsih, Novie Astuti; Asmoro, Wiwiek Kusumaning; Cinderatama, Toga Aldila; Putranti, Eti
Jurnal Pengabdian pada Masyarakat Ilmu Pengetahuan dan Teknologi Terintegrasi Vol. 7 No. 1 (2022): December
Publisher : Politeknik Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33795/jindeks.v7i1.374

Abstract

UMKM merupakan salah satu penggerak ekonomi dalam meningkatkan pendapatan daerah. Pisang Gimbal merupakan salah satu UMKM di bidang kuliner yang berbahan dasar pisang. Pada saat ini mitra masih melakukan pencatatan pembukuan secara manual dan belum membuat laporan keuangan. Mitra hanya melakukan pencatatan pemasukan dan pengeluaran tanpa melakukan perhitungan laba atau rugi. Berdasarkan hal tersebut, maka tujuan program ini adalah memberikan pendampingan untuk pencatatan laporan keuangan yang berbasis teknologi informasi, sehingga akan menghasilkan laporan keuangan yang mudah dan tepat. Pendampingan ini dilaksanakan di UMKM Pisang Gimbal di Jl. Setono No. 82b Kecamatan Ngadirejo Kota Kediri. Terdapat enam tahapan dalam melaksanakan kegiatan meliputi koordinasi tim, koordinasi tim dengan mitra, pengadaan aplikasi pencatatan laporan keuangan berbasis teknologi informasi, pelatihan aplikasi berbasis teknologi informasi, evaluasi kegiatan, dan pelaporan. Hasil dari program ini adalah peningkatan kemampuan mitra dalam mencatat laporan keuangan menggunakan aplikasi sistem pengelolaan keuangan Pisang Gimbal.
Mobile Based Application for Loan Approval and Loan Distribution Using Machine Learning in Savings and Loan Cooperatives Nugroho , Benni Agung; Alhamri, Rinanza Zulmy; Cinderatama, Toga Aldila
International Journal of Entrepreneurship, Business and Creative Economy Vol. 5 No. 2 (2025): July
Publisher : Research Synergy Foundation

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31098/ijebce.v5i2.3397

Abstract

Several savings and loan cooperatives (KSP) in Kediri City, Indonesia have used a website-based information system for increasing efficiency. However, the financial health of KSP in Kediri City remains low because there are many delays in credit payments and even bad credit occurs. Manual profiling for approving loan application causes bad decisions. The management needs a function to obtain recommendation for approving loan application and also for distributing the loan service to potential members automatically. The purpose of this research is to develop a mobile based application for loan approval recommendation and loan distribution utilizing Machine Learning (ML) in KSP and to study the performance of the model using Support Vector Machine (SVM) method. It adopted Waterfall Method including analysis, design, implementation, and testing for two purposes including SVM model development and Android based application development. The dataset experienced preprocess including data cleaning, label encoding, and normalization. It obtained amounts to 150 data for loan approval recommendation and 150 data for loan distribution. Implementation stage includes developing Android based application and Python based ML. The testing stage uses functional testing for Android application and K-Fold Cross Validation for ML performance. Android application has two users, the first is admin that can manage member, retrieve loan approval recommendation, and manage loan application, then the second is member that can retrieve loan distribution and apply loan. The performance of the ML using SVM includes the accuracy of loan approval recommendation reached 90%, while loan distribution reached 85%.
From Intuition to Automation: A Comparative Study of Traditional Investment Decisions and Robo-Advisory Adoption Among Retail Investors in Indonesia Pinandhito, Kenneth; Ayundyayasti, Prima; Fajria, Rola Nurul; Cinderatama, Toga Aldila; Martia, Dina Yeni
International Journal of Multidisciplinary Sciences and Arts Vol. 4 No. 3 (2025): International Journal of Multidisciplinary Sciences and Arts, Article July 2025
Publisher : Information Technology and Science (ITScience)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/ijmdsa.v4i3.6463

Abstract

The development of digital technology has transformed the investment decision-making process from being based on human analysis to automated algorithm-based solutions such as robo-advisors. This study aims to compare traditional and technology-based investment decision-making approaches among retail investors in Indonesia, focusing on adoption, perceived trust, and effectiveness of robo-advisor use. Using quantitative descriptive-correlational approach to compare traditional and technology-based investment decision-making methods, this study collected survey data from 120 individual. The results show a significant positive correlation between trust in traditional methods and the use of investment applications, although the adoption rate of robo-advisors is still low. The main barriers faced are low digital literacy and lack of trust in automated systems. These findings emphasize the importance of targeted investor education and increased transparency on robo-advisory platforms. This study contributes to the literature on fintech adoption in emerging markets and offers practical insights for fintech developers and policymakers.
Rancang Bangun Sistem Informasi Perpustakaan Berbasis Website di SMAN Ploso Menggunakan Algoritma Apriori Vista, Candra Bella; Nugraha, Girindra Fajar; Cinderatama, Toga Aldila
Jurnal Informatika Polinema Vol. 10 No. 2 (2024): Vol 10 No 2 (2024)
Publisher : UPT P2M State Polytechnic of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33795/jip.v10i2.5000

Abstract

Proses manajemen seperti pencatatan peminjaman, pengembalian, dan inventaris buku yang ada di Perpustakaan SMAN Ploso masih menggunakan proses pencatatan pada buku. Selain itu, proses pengembalian buku belum terorganisir dengan baik, karena masih terdapat anggota perpustakaan yang mengembalikan buku pada rak yang tidak semestinya. Maka dari itu, sistem ini dibuat bertujuan untuk memberikan kemudahan dalam proses pengelolaan data perpustakaan dan memberikan rekomendasi penempatan buku dan pengadaan buku berdasarkan pola peminjaman. Sistem ini memiliki fitur pengelolaan data perpustakaan seperti data buku, anggota, peminjaman, pengembalian, rekomendasi penempatan buku berdasarkan kategori pada data transaksi, rekomendasi pengadaan buku berdasarkan data transaksi, laporan, dan denda. Pada sistem ini admin dapat melakukan perhitungan Algoritma Apriori pada menu penempatan buku dengan memasukkan rentan waktu data peminjaman, nilai minimum support, dan nilai minimum confidence. Berdasarkan pengujian yang dilakukan, admin memasukkan rentan waktu bulan Januari – Februari. Kemudian untuk nilai minimum support sebesar 10% dan nilai minimum confidence sebesar 60%. Berdasarkan analisis yang telah dilakukan, pemilihan nilai minimum support 10% dan nilai minimum confidence 60% memperoleh hasil yang ideal, karena itemset dan aturan asosiasi yang muncul memiliki keterkaitan yang signifikan. Dari nilai-nilai tersebut kemudian diproses oleh sistem dan menghasilkan nilai confidence 4 itemset, di mana masing-masing itemset tersebut memiliki nilai persentase confidence yang telah memenuhi nilai minimum confidence. Dari hasil yang diperoleh kategori kimia dan matematika sebesar 100%, kategori ekonomi dan geografi sebesar 62,5%, kategori geografi dan ekonomi sebesar 83,3%, kategori fisika dan matematika sebesar 80%. Dari hasil nilai confidence tersebut dapat digunakan sebagai rekomendasi penempatan buku maupun pengadaan buku.