Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Indonesian Journal of Electrical Engineering and Computer Science

Artificial intelligence detection of refractive eye diseases using certainty factor and image processing Rachman, Rizal; Susanti, Sari; Suhendi, Hendi; Satyanegara, Adi Karawinata
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 3: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i3.pp1787-1797

Abstract

Refractive errors are defined as an impairment in the eye’s capacity to focus light, resulting in the formation of blurred or unfocused images. These issues arise from alterations in the shape of the cornea, the length of the eyeball, or the aging of the crystalline lens. It is anticipated that the prevalence of visual impairment will increase in conjunction with global population growth. At present, a significant number of countries have not yet accorded sufficient priority to eye health within their healthcare systems. This has resulted in insufficient awareness and reluctance to seek costly specialized care. This study proposes the development of an advanced refractive eye disease detection system with the objective of improving diagnostic accuracy, disseminating disease information, and reducing financial barriers to specialist consultation. The research employs certainty factor (CF) methods and image processing with feature extraction. The initial results demonstrate the potential for identifying specific refractive eye diseases with high certainty through the analysis of symptoms and the examination of photographs of the eye. The proposed approach provides an alternative method for diagnosing refractive eye diseases, which could enhance access to refractive eye care services and reduce the economic burden on patients.
Breast cancer identification using machine learning and hyperparameter optimization Arifin, Toni; Prasetyo Agung, Ignatius Wiseto; Junianto, Erfian; Rachman, Rizal; Wibowo, Ilham Rachmat; Agustin, Dari Dianata
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 3: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i3.pp1620-1630

Abstract

Breast cancer identification can be analyzed through genomic analysis using gene expression data, one type of which is mRNA. This involves analyzing gene expression patterns of breast tissue samples to distinguish breast cancer from healthy tissue or to differentiate subtypes of different breast cancers. This research developed the right computational model for breast cancer classification using machine learning and hyperparameter optimization algorithms. The primary objective of this research is to utilize various machine learning algorithms to classify breast cancer based on gene expression and enhance the models developed in previous studies. This paper provides an extensive literature review of prior breast cancer classification research and offers new theoretical perspectives. This research used a problem-solving approach with conventional machine learning techniques, most notably the decision tree. It also evaluates other machine learning algorithms for comparison, including k-nearest neighbor, naïve bayes, random forest, extra tree classifier, and support vector machine. The evaluation process used classification reports that provide insight into the precision, recall, F1-score, and accuracy of each machine learning model. The evaluation results show that the performance of the decision tree algorithm model is superior and impressive, achieving 99.73% accuracy and a score of 1 for precision, recall, and F1-score.