p-Index From 2020 - 2025
10.809
P-Index
This Author published in this journals
All Journal TEKNIK INFORMATIKA Syntax Jurnal Informatika Jurnal Ilmu Komputer dan Agri-Informatika SITEKIN: Jurnal Sains, Teknologi dan Industri CESS (Journal of Computer Engineering, System and Science) Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) RABIT: Jurnal Teknologi dan Sistem Informasi Univrab Jurnal Informatika Jurnal CoreIT JURNAL MEDIA INFORMATIKA BUDIDARMA Indonesian Journal of Artificial Intelligence and Data Mining Seminar Nasional Teknologi Informasi Komunikasi dan Industri INOVTEK Polbeng - Seri Informatika JURNAL INSTEK (Informatika Sains dan Teknologi) Jurnal Informatika Universitas Pamulang Jurnal Nasional Komputasi dan Teknologi Informasi JURIKOM (Jurnal Riset Komputer) JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) JOISIE (Journal Of Information Systems And Informatics Engineering) Building of Informatics, Technology and Science Progresif: Jurnal Ilmiah Komputer Zonasi: Jurnal Sistem Informasi Journal of Applied Engineering and Technological Science (JAETS) Jurnal Tekinkom (Teknik Informasi dan Komputer) JOURNAL OF INFORMATION SYSTEM MANAGEMENT (JOISM) Indonesian Journal of Electrical Engineering and Computer Science JOURNAL OF INFORMATION SYSTEM RESEARCH (JOSH) Journal of Computer System and Informatics (JoSYC) Jurnal Sistem Komputer dan Informatika (JSON) JUKI : Jurnal Komputer dan Informatika TIN: TERAPAN INFORMATIKA NUSANTARA Jurnal Teknik Informatika (JUTIF) Jurnal Restikom : Riset Teknik Informatika dan Komputer Information System Journal (INFOS) Jurnal Computer Science and Information Technology (CoSciTech) Jurnal UNITEK Bulletin of Computer Science Research KLIK: Kajian Ilmiah Informatika dan Komputer Jurnal Informatika Teknologi dan Sains (Jinteks) Jurnal Informatika: Jurnal Pengembangan IT Jurnal Komtika (Komputasi dan Informatika)
Claim Missing Document
Check
Articles

Found 5 Documents
Search
Journal : Journal of Computer System and Informatics (JoSYC)

Penerapan Algoritma Naïve Bayes Classifier Dalam Klasifikasi Status Gizi Balita dengan Pengujian K-Fold Cross Validation Nurainun Nurainun; Elin Haerani; Fadhilah Syafria; Lola Oktavia
Journal of Computer System and Informatics (JoSYC) Vol 4 No 3 (2023): May 2023
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/josyc.v4i3.3414

Abstract

Nutritional status is a condition related to nutrition that can be measured and is the result of a balance between nutritional needs in the body and nutritional intake from food. In Indonesia, there are still many nutritional problems such as malnutrition and other nutritional problems. This research will use the Naïve Bayes Classifier algorithm with K-Fold Cross Validation testing. The data used is data on the nutritional status of toddlers in August 2022 at the Rambah Samo I Health Center. Attributes in this study include Gender, Birth Weight, Birth Height, Age at Measurement, Weight, Height, ZS BB/U, BB/U, ZS TB/U, and TB/U. Determination of the nutritional status of toddlers in this study was based on the BB/TB index which consisted of 6 classes, namely severely wasted, wasted, normal, possible risk of overweight, overweight, and obese. From the research conducted, it was found that the Naïve Bayes Classifier algorithm with K-Fold Cross Validation can correctly classify the nutritional status of toddlers. From data processing using 10-Fold Cross Validation on the Naïve Bayes Classifier algorithm, it is known that the highest accuracy value is 82.94% in the 5th iteration, while the lowest accuracy value is 65.88% in 6th iteration. With an average overall accuracy value of 75.47%. Meanwhile, the average precision value obtained is 81.36% and the average recall value is 75.47%.
Clustering Vaksinasi Penyakit Mulut dan Kuku Menggunakan Algoritma Fuzzy C-Means Yusril Hidayat; Alwis Nazir; Reski Mei Candra; Suwanto Sanjaya; Fadhilah Syafria
Journal of Computer System and Informatics (JoSYC) Vol 4 No 3 (2023): May 2023
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/josyc.v4i3.3416

Abstract

Foot and Mouth Disease is a disease that attacks cloven hooves, this disease spreads very quickly and the mortality rate of infected animals is up to 100%. FMD is caused by type A picornaviridae virus, namely Apthaee epizootecae, which has a development period of 1-14 days after the animal is infected. The delay in handling it can cause many livestock to die and have an impact on cattle farmers. One of the steps taken to prevent the spread of this disease is to eradicate all livestock. The Riau Provincial Government has taken steps to prevent vaccination of all livestock in Riau Province in the form of preventing this disease from becoming more widespread. From these problems, this research will form a data cluster for the PMK program in Riau Province so that the government can improve supervision of livestock to prevent re-outbreaks of foot and mouth disease in Riau Province. The method used is data mining with the Fuzzy C-means algorithm and the data used comes from the Department of Animal Husbandry and Animal Health in Riau Province. The best cluster results after testing is 2 clusters. The most numerous clusters are in cluster 1 with a total of 48704 cows and cluster 2 with a total of 21232. The validity test using the DBI gets a value of 0.416, so it is still far from good
Implementasi Algoritma K-Nearest Neighbor Untuk Menentukan Klasifikasi Kelulusan Mahasiswa Teknik Informatika Suswantia Andriani; Alwis Nazir; Reski Mai Candra; Fadhilah Syafria; Iis Afrianty
Journal of Computer System and Informatics (JoSYC) Vol 4 No 4 (2023): August 2023
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/josyc.v4i4.3914

Abstract

Kinerja sebuah universitas dapat dinilai semakin baik jika terdapat peningkatan jumlah mahasiswa yang berhasil menyelesaikan masa studinya tepat waktu. Perguruan tinggi harus meningkatkan kualitas akademik mahasiswa dalam proses perkuliahan untuk hasil yang optimal. Namun kenyataannya banyak keterlambatan kelulusan mahasiswa pada Universitas Islam Negri Sultan Syaif Kasim Riau terkhusus jurusan Teknik Informatika ini yang menjadi permasalahan. Oleh karena itu dibutuhkannya sebuah analisa mengklasifikasi data kelulusan mahasiswa dengan memanfaatkan proses data mining. Penelitian ini menerapkan algoritma K-Nearest Neighbor (K-NN) pada proses klasifikasi. Tujuan penelitian ini adalah hasil dari klasifikasi kelulusan ini diharapkan dapat memberikan kontribusi bagi pihak fakultas teknik dan universitas dalam melakukan evaluasi dan perbaikan terhadap sistem pembelajaran, sehingga menghasilkan lulusan tepat waktu dan berkualitas. Data yang digunakan pada penelitian ini sebanyak 613 data 5 tahun terakhir dari tahun 2016 hingga 2020 dengan pembagian data dengan rasio 80 data untuk pelatihan (training) dan 20 data untuk pengujian (testing). Hasil evaluasi confusion matrix dari K = 3, K = 5, K = 7 menghasilkan akurasi tertinggi diperoleh ketika K = 3 dengan akurasi 93,06%, presisi 99,09%, dan recall 99,58%. Dari hasil penelitian, dapat ditarik kesimpulan bahwa penerapan data mining berhasil menciptakan model klasifikasi dengan memanfaatkan algoritma K-Nearest Neighbor (K-NN) dalam mengklasifikasikan status kelulusan mahasiswa pada program sudi Teknik Informatika di Universitas Islam Negeri Sultan Syarif Kasim Riau
Perbandingan Jarak Metrik pada Klasifikasi Jamur Beracun Menggunakan Algoritma K-Nearest Neighbor (K-NN) Andre Suarisman; Alwis Nazir; Fadhilah Syafria; Liza Afriyanti
Journal of Computer System and Informatics (JoSYC) Vol 5 No 1 (2023): November 2023
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/josyc.v5i1.4511

Abstract

Mushrooms are organisms from the kingdom fungi that have a fleshy body structure and can be consumed, but there are some species of mushrooms that are not safe to eat and have specific characteristics, so distinguishing between edible and poisonous mushrooms can be tricky due to the almost identical appearance of various mushroom species. Errors in identifying edible mushrooms can impact the health of consumers who consume the mushrooms. Evaluating the performance of various methods on a dataset is a key step in determining the most suitable classification method. This research is about how to measure the performance of classification methods on toxic mushroom datasets using the K-Nearest Neighbor algorithm with several metrics such as euclidean, manhattan and minkowski, which is a method for classifying new data based on proximity to existing training data. The results obtained in this study with several distance metrics can be concluded that the accuracy value of the manhattan metric is better than the euclidean and minkowski metrics. Because the manhattan metric gets the highest accuracy result of 99% with K = 100 and the lowest 82% with K = 3000, while the euclidean metric gets accuracy results with a value of 98% with K = 100 and 72% with K = 3000, and the minkowski metric gets accuracy results with a value of 96% at K = 100 and 64% at K = 3000.
Penerapan Metode Clustering Dengan K-Means Untuk Memetakan Potensi Tanaman Padi di Sumatera Irma Sanela; Alwis Nazir; Fadhilah Syafria; Elin Haerani; Lola Oktavia
Journal of Computer System and Informatics (JoSYC) Vol 5 No 1 (2023): November 2023
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/josyc.v5i1.4523

Abstract

Rice plants are the primary source of rice, the staple food for the majority of the Indonesian population. Despite the presence of other food alternatives, rice remains irreplaceable for those accustomed to consuming rice. According to data from the Food and Agriculture Organization of the United Nations (FAO) in 2018, Indonesia is the third-largest rice producer in the world, with a total production of 59.2 million tons. However, urban and agricultural spatial planning is not yet fully integrated, resulting in often conflicting decisions in land use planning for agriculture and urban development. To meet the rice demand in Sumatra, efforts are needed to increase rice production in each province. Therefore, this research aims to map the potential for rice cultivation in Sumatra based on production and harvest results from 1993 to 2020. The method used in this study is K-Means, which allows the grouping of rice potential areas into three categories: high, medium, and low. The research results produced three clusters, evaluated using the Davies Bouldin Index (DBI) with a value of 0.3943. The clustering results indicate that Cluster 0 contains 92 areas with a high success rate, Cluster 2 comprises 84 areas with a medium success rate, and Cluster 1 consists of 48 areas with a low success rate. The category of low success rate is found in Cluster 1 with 48 areas. Cluster 0 includes Aceh, North Sumatra, West Sumatra, South Sumatra, and Lampung within certain time periods. Cluster 1 encompasses other areas with different characteristics. Cluster 2 includes the provinces of Riau, Jambi, and Bengkulu.
Co-Authors Abdul Aziz Abdullah, Said Noor Abdussalam Al Masykur Adrian Maulana Adzhima, Fauzan Afriyanti, Liza Agung Syaiful Rahman Agus Buono Agustina, Auliyah Ahmad Paisal Aji Pangestu Adek Akbar, Lionita Asa Alfin Hernandes Alwaliyanto Alwis Nazir Alwis Nazir Alwis Nazir Alwis Nazir Alwis Nazir Alwis Nazir Amalia Hanifah Artya Aminuyati Andre Suarisman Aprima, Muhammad Dzaky Ariq At-Thariq Putra Benny Sukma Negara Bib Paruhum Silalahi Boni Iqbal Che Hussin, Ab Razak Darmila Dede Fadillah Deny Ardianto Devi Julisca Sari Dina Septiawati Dodi Efendi Eka Pandu Cynthia Elin Haerani Elin Haerani Elin Haerani Elin Haerani Elin Haerani Elin Haerani Elin Haerani Elin Hearani Ellin Haerani Elvia Budianita Faska, Ridho Mahardika Fatma Hayati Fauzan Adzim Febi Nur Salisah Febi Yanto Felian Nabila Fitra Lestari Fitri Insani Fitri Insani Fitri Wulandari Fratiwi Rahayu Gusrifaris Yuda Alhafis Gusti, Siska Kurnia Guswanti, Widya Habibi Al Rasyid Harpizon Hafez Almirza Hafsyah Hara Novina Putri Harni, Yulia Hertati Ibnu Afdhal Ihda Syurfi Iis Afrianty Iis Afrianty Iis Afrianty Iis Afrianty Iis Afrianty Iis Afrianty Iis Afrianty Ikhsan, Tomi Ikhsanul Hamdi Inggih Permana Irma Sanela Ismail Marzuki Ismar Puadi Isnan Mellian Ramadhan Israldi, Tino Iwan Iskandar Iwan Iskandar Iwan Iskandar Iwan Iskandar Iwan Iskandar Iwan Iskandar Jasril Jasril Jasril Jasril Karina Julita Khair, Nada Tsawaabul Lestari Handayani Lestari Handayani Lili Rahmawati Liza Afriyanti Lola Oktavia Lola Oktavia M Fikry M. Afif Rizky A. Ma'rifah, Laila Alfi Masaugi, Fathan Fanrita Maulana Junihardi Mawadda Warohma Mazdavilaya, T Kaisyarendika Mhd. Kadarman Mori Hovipah Mori Hovipah Morina Lisa Pura Muhammad Affandes Muhammad Alvin Muhammad Fahri Muhammad Fikry Muhammad Hanif Abdurrohman Muhammad Ichsanul Bukhari Muhammad Syafriandi, Muhammad Muhammad Yusril Haffandi Muhammad Yusuf Fadhillah Mulyono, Makmur Muslimin, Al’hadiid Nabyl Alfahrez Ramadhan Amril Nailatul Fadhilah Nazir, Alwis Nazruddin Safaat H Neni Sari Putri Juana Nesdi Evrilyan Rozanda Nining Nur Habibah Novriyanto Novriyanto Nurainun Nurainun Okfalisa Okfalisa Permata, Rizkiya Indah Pizaini Pizaini Puspa Melani Almahmuda Putra, Fiqhri Mulianda Putri Mardatillah Putri, Widya Maulida Rahmad Abdillah Rahmad Abdillah Rahmad Kurniawan Rahmadhani, R. Raja Sultan Firsky Ramadhan, Aweldri Ramadhani, Siti Reski Mai Candra Reski Mai Candra Reski Mai Candra Reski Mei Candra Riska Yuliana Roni Salambue Said Nanda Saputra Satria Bumartaduri Silfia Silfia Siska Kurnia Gusti Siska Kurnia Gusti Siti Ramadhani Siti Sri Rahayu Suswantia Andriani Suwanto Sanjaya Syaputra, Muhammad Dwiky Teddie Darmizal Wulandari, Fitri Yusra, Yusra Yusril Hidayat Zabihullah, Fayat Zulastri, Zulastri