Claim Missing Document
Check
Articles

Found 13 Documents
Search

Pelatihan Pengelolaan Website untuk Guru SD Negeri 5 Lerep Kabupaten Semarang Mujiyono, Sri; Sanjaya, Ucta Pradema; Wibisono, Iwan Setiawan; Rizqi, Hesti Yunitiara
Jurnal Masyarakat Madani Indonesia Vol. 4 No. 2 (2025): Mei
Publisher : Alesha Media Digital

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59025/7n11gm95

Abstract

Transformasi digital dalam pendidikan menjadi kebutuhan mendesak di era akselerasi teknologi, namun keterbatasan literasi teknis di kalangan pendidik dan peserta didik menghambat optimalisasi infrastruktur yang tersedia. Studi kasus di SD Negeri 5 Lerep menunjukkan absennya platform digital resmi sebagai sarana penunjang pembelajaran, padahal website dapat menjadi ekosistem dinamis untuk kolaborasi dan interaksi tanpa batas geografis. Minimnya keterampilan teknis guru menyebabkan potensi transformatif teknologi terabaikan, sehingga diperlukan solusi strategis seperti pelatihan intensif pembuatan website. Program Pengabdian kepada Masyarakat (PkM) dirancang untuk mengubah pendidik dari konsumen pasif menjadi arsitek konten digital, membangun identitas digital sekolah, dan menciptakan ekosistem belajar yang adaptif dan personal. Kegiatan PkM ini berhasil mengembangkan website berbasis WordPress dengan pendekatan hybrid, menggabungkan metode waterfall dan agile, serta fitur seperti drag-and-drop builder dan plugin LearnDash. Hasilnya, terbentuk portal yang tidak hanya memfasilitasi administrasi terpusat, tetapi juga membuka kanal komunikasi transparan antara guru, orang tua, dan murid. Portal aktif SD Negeri 5 Lerep menjadi model replikabel untuk institusi pendidikan dengan keterbatasan serupa, menciptakan jejaring kolaboratif berkelanjutan yang mendorong revolusi cara berpikir dalam pendidikan.
Algoritma K-Means untuk Mengelompokkan Tingkat Pengangguran Terbuka (TPT) menurut Provinsi di Indonesia Saputra, Agus Bima; Sanjaya, Ucta Pradema; Sa’ida, Ita Aristia
Jurnal Ilmiah Informatika Global Vol. 15 No. 2: Agustus 2024
Publisher : UNIVERSITAS INDO GLOBAL MANDIRI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36982/jiig.v15i2.4359

Abstract

Unemployment is one of the main problems faced by many countries, including Indonesia. The Open Unemployment Rate (OER) is an important indicator used to measure the amount of labor force that is not absorbed in the labor market. This research aims to Cluster the provinces in Indonesia based on unemployment rate and school enrollment rate, so as to provide a clearer picture of the distribution of unemployment in different regions: The study identified three main Clusters: Cluster 1: Provinces with high unemployment rates. Cluster 2: Provinces with a medium unemployment rate. Cluster 3: Provinces with low unemployment rates. Distribution: The Clustering results show that 13 provinces are included in Cluster 1, 18 provinces in Cluster 2, and 3 provinces in Cluster 3. This study found that the K-Means algorithm is effective in Clustering provinces based on TPT and school enrollment rates. The Clustering results show significant variation between provinces, with some provinces having higher unemployment rates and lower school enrollment than others.This study successfully Clustered Indonesian provinces based on unemployment and school enrollment rates using the K-Means algorithm. The Clustering results provide valuable insights into the distribution of unemployment in Indonesia and can be used as a basis for more effective policy making.
Binary Classification for Predicting the Investment Trends of The Younger Generation Based on Machine Learning Oktana, Weka Brilliant Jaya; Sanjaya, Ucta Pradema
Journal of Applied Informatics and Computing Vol. 9 No. 6 (2025): December 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i6.11549

Abstract

This computational study examines investment behavior patterns among a specialized cohort of 115 final year and thesis writing university students, implementing sophisticated feature engineering to transform categorical survey responses into quantifiable financial metrics. The research methodology leverages this unique dataset where respondents' advanced academic standing provides particularly relevant insights into near-term investment decisions. Experimental outcomes reveal distinct algorithmic performance patterns: Random Forest achieved 69.6% accuracy in multi-class classification with weighted averages of 0.662 precision, 0.696 recall, and 0.678 F1-score, while Logistic Regression demonstrated superior binary classification capability with 82.6% accuracy, supported by 0.818 precision, 0.826 recall, and 0.814 F1-score (weighted averages). The hybrid architecture integrating machine learning with business rules achieved peak performance of 85.2% accuracy, successfully balancing predictive power with operational interpretability. These findings underscore how strategically engineered features combined with a carefully selected respondent pool can effectively decode complex financial behaviors, providing financial institutions with actionable frameworks for developing targeted investment solutions for the graduate student demographic while advancing methodological approaches for specialized survey data in fintech applications.