Claim Missing Document
Check
Articles

Found 12 Documents
Search

Design and Performance Evaluation of A Portable Low-Head Pico-Hydro System using A Rewound Axial Generator for Rural Energy Aripriharta, Aripriharta; Nibrosoma, Ahmad Dhaffa; Afandi, Arif Nur; Faiz, Mohamad Rodhi; Rahmadhani, Nur Aini Syafrina; Bagaskoro, Muhammad Cahyo; Rosmin, Norzanah
Jurnal ELTIKOM : Jurnal Teknik Elektro, Teknologi Informasi dan Komputer Vol. 9 No. 1 (2025)
Publisher : P3M Politeknik Negeri Banjarmasin

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31961/eltikom.v9i1.1489

Abstract

This study evaluates the performance of a pico-hydro system installed on a river with low head and discharge. The system was assessed under no-load and varying load conditions (25–100%). The results indicate that the generator performs according to the initial design, despite some fluctuations in output parameters. Under no-load conditions, the generator maintains a stable output voltage between 12–14 VAC, with a rotational speed of 590–600 RPM, a system frequency of 59–60 Hz, and zero current. The step-up transformer successfully raises the voltage to 220–222 V with high stability, although minor ripple is observed in the output signal. Under load, the generator voltage slightly decreases to 12–14 V as the load increases. The rotational speed also declines (560–590 RPM), affecting frequency stability, which drops from 59 Hz at 25% load to 56 Hz at full load. The current rises proportionally with the load, from 0.10 A at 25% to 0.45 A at 100%. The observed performance drop under load highlights the effect of load on generator speed and overall system output. The primary impacts of the 25–100% load range are evident in generator speed, frequency stability, and waveform quality. Overall, the system performs satisfactorily for low-head pico-hydro applications with a power capacity of up to 100 Watts, suitable for rural street lighting.
Integrasi Smart Camera dan AI untuk Mendukung Agribisnis Kopi Berkelanjutan di Wilayah Pedesaan Indonesia Aripriharta, Aripriharta; Kiranawati, Titi Mutiara; Zubaidah, Siti; Devi, Mazarina; Salwa, Nur Fadhila Rasyida; Ananta, Sasmita Bagus Sang Kesuma; Bagaskoro, Muhammad Cahyo
Abditeknika Jurnal Pengabdian Masyarakat Vol. 5 No. 2 (2025): Oktober
Publisher : LPPM Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31294/abditeknika.v5i2.9602

Abstract

Kendala utama agribisnis kopi pedesaan di Lembah Dilem Wilis, Trenggalek, adalah kualitas biji yang tidak konsisten akibat sortir manual. Sistem sortir otomatis berbasis Smart Camera dan AI dikembangkan untuk klasifikasi real-time biji kopi berdasarkan visual seperti warna dan ukuran. Dirancang dengan Raspberry Pi, sensor kamera, dan algoritma CNN , penerapannya melibatkan kolaborasi peneliti dan petani lokal secara partisipatif. Kami menggunakan 500 data latih yang diakuisisi dari aplikasi untuk pelatihan model CNN kami. Uji lapangan menunjukkan sistem ini mengurangi waktu sortir dari 45 menjadi 15 menit per kg, meningkatkan akurasi seleksi dari 75% menjadi 94%, dan melipatgandakan produktivitas harian. Analisis confusion matrix heatmap mengonfirmasi akurasi klasifikasi tinggi , dan sensor PZEM menunjukkan keandalan pemantauan daya. Meskipun meningkatkan efisiensi, tantangan adopsi petani kecil dan variasi kondisi biji kopi menjadi area pengembangan lebih lanjut. Evaluasi kuantitatif sebelum dan sesudah implementasi, menggunakan sampel biji kopi lokal, menegaskan bahwa integrasi teknologi ini meningkatkan efisiensi, mutu produksi, dan memberdayakan petani menuju agribisnis berkelanjutan.   The primary challenge for rural coffee agribusiness in Dilem Wilis Valley, Trenggalek, is inconsistent bean quality due to manual sorting. An automated sorting system based on Smart Camera and AI was developed for real-time classification of coffee beans based on visual parameters like color and size. Designed with a Raspberry Pi, camera sensor, and CNN algorithm , its implementation involved participatory collaboration between researchers and local farmers. We used 500 training data acquired from the application for our CNN model training. Field trials showed the system reduced sorting time from 45 to 15 minutes per kg, increased selection accuracy from 75% to 94%, and doubled daily productivity. Confusion matrix heatmap analysis confirmed high classification accuracy , and PZEM sensors demonstrated reliable power monitoring. While enhancing efficiency, challenges in small-scale farmer adoption and varied bean conditions present areas for further development. Quantitative evaluation before and after implementation, using local coffee bean samples, affirmed that this technology integration boosts efficiency, product quality, and empowers farmers towards sustainable agribusiness.