Claim Missing Document
Check
Articles

Found 15 Documents
Search

Rancang Bangun Sistem Informasi Deteksi Dini Stunting dengan Metode Artificial Neural Network Lukmana, Hen Hen; Al-Husaini, Muhammad; Puspareni, Luh Desi; Hoeronis, Irani
JUSTIN (Jurnal Sistem dan Teknologi Informasi) Vol 12, No 3 (2024)
Publisher : Jurusan Informatika Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/justin.v12i3.80119

Abstract

Stunting pada anak merupakan masalah kesehatan malnutrisi kronis yang menjadi perhatian serius di Indonesia.  Stunting dapat terjadi pada anak yang mengalami kekurangan gizi kronis, terutama pada usia 0-23 bulan. Faktor-faktor yang menyebabkan stunting pada anak sangat kompleks dan melibatkan berbagai faktor seperti gizi, kesehatan, sosial ekonomi, lingkungan, genetik dan peilaku. Penelitian ini bertujuan untuk merancang dan mengembangkan sistem informasi deteksi dini stunting menggunakan teknologi artificial neural network yang dilengkapi dengan stacking classifiers dengan dikombinasikan ensemble machine learning gradient boosting, random forest dan output estimator regresi logistik, selain itu pengembangan sistem ini dilakukan dengan menggunakan metode pengembangan waterfall. Sistem ini diharapkan dapat memprediksi risiko stunting secara akurat berdasarkan data pertumbuhan anak, serta memberikan rekomendasi intervensi yang tepat. Penggunaan neural network memungkinkan analisis data yang kompleks dan pembaruan model secara berkala dengan hasil rataan akurasi prediksi kombinasi beberapa algoritma menggunakan model stacking classifiers dan cross validation tersebut menghasilkan akurasi yang stabil di 86,22% berdasarkan dataset 10 ribu label target prediksi. Hasil dari penelitian berdasarkan model pengembangan dan pelatihan model ini mencakup analisis kebutuhan sistem, perancangan dan desain sistem dengan UML, implementasi sistem dengan fitur pengecekan stunting, artikel edukasi, konsultasi, login dan registrasi, dan hasil pengujian dengan System Usability Scale (SUS) dengan nilai rata-rata 81 yang termasuk pada grade A dan blackbox testing dengan hasil sesuai harapan.
PERANCANGAN SISTEM INFORMASI PERPUSTAKAAN DIGITAL BERBASIS WEBSITE MENGGUNAKAN METODE WATERFALL DI JURUSAN INFORMATIKA UNIVERSITAS SILIWANGI Lukmana, Hen Hen; Alhusaini, Muhamad; Purwayoga, Vega
METHOMIKA: Jurnal Manajemen Informatika & Komputerisasi Akuntansi Vol. 7 No. 2 (2023): METHOMIKA: Jurnal Manajemen Informatika & Komputersisasi Akuntansi
Publisher : Universitas Methodist Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46880/jmika.Vol7No2.pp340-346

Abstract

The COVID-19 pandemic that occurred at the end of 2019 has accelerated the application and use of technology in universities. Various academic activities, such as learning, final project work, and UTS and UAS, were completed online. But unfortunately, supporting facilities such as digital libraries are needed as a source of reference and information that can store various material needs such as ebooks and modules that can be used for the learning process and can be accessed anywhere and anytime. This is the basis for designing the Digital Library Information System to make it easier for lecturers and students to find the books and modules they need. This library information system is web-based and made with HTML, CSS, Javascript, PHP, and MySQL programming languages. The method used in the development of this digital library information system is the waterfall method with the UML (Unified Modeling Language) software approach. With the Informatics Digital Library, it is hoped that it can help students and lecturers find various references and information for the learning process.
Ulcerative Colitis Classification on Endoscopy Image using Support Vector Machine with Image Extraction using Gray Level Co-Occurrence Matrix Nurrohman, Agni; Hoeronis, Irani; Lukmana, Hen Hen
JUSTIN (Jurnal Sistem dan Teknologi Informasi) Vol 12, No 4 (2024)
Publisher : Jurusan Informatika Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/justin.v12i4.82903

Abstract

Ulcerative colitis or inflammation of the colon is a chronic inflammatory disorder characterized by mucosal inflammation involving the large intestine (colon) and leading to the anus (rectum). The number of cases of ulcerative colitis ranges from 90-505 people out of 100,000 people in Northern Europe and North America, less common in Western and Southern European regions as well as at least 10 times less in Asia, Africa and Oriental populations. This study aims to classify endoscopic images with the Support Vector Machine method with the results of feature extraction using Gray Level Co-Occurrence Matrix. The dataset used is the kvasir dataset with the number of datasets used in this study totaling 1990 with each class, namely the healthy class and the ulcerative colitis class, having 995 images. Endoscopy results in the form of digital images captured using a small camera inserted into the patient's gastrointestinal tract. In this study, the accuracy model of Ulcerative Colitis classification was calculated using the results of endoscopy image feature extraction with GLCM feature extraction using SVM classification with RBF kernel. The search for hyperparameter values is carried out to find the best C and gamma values so that this study has model accuracy results which previously had an accuracy of 86.45% to 90.85%, a precision value of 91.58%, a recall value of 90.68% and an f1-score value of 91.12%.
Pengembangan Sistem Informasi Deteksi Dini Stunting Berbasis Sistem Pakar Menggunakan Metode Forward Chaining Lukmana, Hen Hen; Al-Husaini, Muhammad; Hoeronis, Irani; Puspareni, Luh Desi
Jutisi : Jurnal Ilmiah Teknik Informatika dan Sistem Informasi Vol 12, No 3: Desember 2023
Publisher : STMIK Banjarbaru

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35889/jutisi.v12i3.1435

Abstract

 AbstractStunting is a chronic nutritional problem that affects the growth and development of children due to sustained chronic malnutrition. Prevention and early detection of stunting are a priority in addressing this issue. However, the challenges in early stunting detection include limited access to quality healthcare services and lack of knowledge and awareness among the community. In this context, the development of an early stunting detection information system using an expert system can be an effective solution. This research aims to develop an expert system-based early stunting detection information system using the forward chaining method. The development method employed is the Expert System Development Life Cycle (ESDLC). The stages in ESDLC include needs assessment, knowledge acquisition from nutrition experts, system design, testing, and maintenance. The results of this research consist of an early stunting detection information system with features such as stunting assessment based on weight, height, and head circumference, consultation with health centers, educational articles, and health center profiles. The system testing is conducted using the black box testing method, which yields expected results. AbstrakStunting merupakan masalah gizi kronis yang mempengaruhi pertumbuhan dan perkembangan anak-anak akibat malnutrisi kronis yang berkelanjutan. Upaya pencegahan dan deteksi dini stunting menjadi prioritas dalam penanganan stunting. Namun, tantangan dalam deteksi dini stunting meliputi kurangnya akses ke layanan kesehatan yang berkualitas dan kurangnya pengetahuan serta kesadaran masyarakat. Dalam konteks ini, pengembangan sistem informasi deteksi dini stunting menggunakan sistem pakar dapat menjadi solusi yang efektif. Penelitian ini bertujuan untuk mengembangkan sistem informasi deteksi dini stunting berbasis sistem pakar menggunakan metode forward chaining. Metode pengembangan yang digunakan adalah Expert System Development Life Cycle (ESDLC). Tahap-tahap dalam ESDLC meliputi penilaian kebutuhan, akuisisi pengetahuan dari ahli gizi, desain sistem, pengujian, dan pemeliharaan.  Hasil penelitian ini berupa sistem informasi deteksi dini stunting yang terdiri dari  fitur pengecekan stunting berdasarkan berat badan, tinggi badan, dan lingkar kepala, konsultasi dengan puskesmas, artikel edukasi, dan profil puskesmas. Pengujian sistem menggunakan metode black box testing dengan hasil sesuai harapan.  
Strategi Difusi Inovasi Teknologi dan Kesehatan Dalam Peningkatan Kesadaran Kesehatan Masyarakat di Purbaratu Rachman, Andi Nur; Al Husaini, Muhammad; Lukmana, Hen Hen; Dewi, Euis Nur Fitriani; Firmadi, Sidik
Dedikasi Sains dan Teknologi (DST) Vol. 4 No. 2 (2024): Artikel Riset Nopember 2024
Publisher : Information Technology and Science (ITScience)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/dst.v4i2.4954

Abstract

Proses globalisasi dan perkembangan teknologi telah membawa dinamika yang signifikan dalam berbagai aspek kehidupan, termasuk di bidang kesehatan. Masalah kesehatan saat ini menjadi salah satu perhatian utama di Indonesia, terutama dengan adanya tantangan untuk mendukung misi kesehatan nasional, yaitu mendorong masyarakat untuk hidup sehat dan memperluas akses terhadap pelayanan kesehatan yang berkualitas. Hal ini menjadi penting terutama di Fasilitas Kesehatan Tingkat Pertama (FKTP) seperti Puskesmas, termasuk di Puskesmas Purbaratu. Program pengabdian ini bertujuan untuk memberikan solusi inovatif berupa aplikasi kesehatan terpadu yang mengintegrasikan pendekatan *transfer learning* dalam teknologi dan kesehatan, memungkinkan adaptasi teknologi informasi yang selaras dengan kebutuhan Puskesmas sebagai fasilitas kesehatan tingkat pertama. Melalui keterlibatan aktif tenaga kesehatan dan masyarakat setempat, pengembangan aplikasi kesehatan terpadu ini diharapkan menciptakan difusi inovasi yang mempermudah masyarakat untuk menerima dan menerapkan teknologi kesehatan melalui pendekatan kolaboratif. Program ini juga merupakan langkah proaktif dalam upaya meningkatkan kualitas kesehatan masyarakat dengan fokus pada pencegahan penyakit. Program ini mengedepankan promosi kesehatan melalui edukasi Perilaku Hidup Bersih dan Sehat (PHBS) yang disampaikan melalui sistem informasi yang dirancang untuk memberikan pendidikan kesehatan secara efektif dan mudah diakses. Diharapkan, pengabdian dan penerapan aplikasi ini mampu mendukung program kesehatan di tingkat masyarakat dengan memperkuat peran Puskesmas sebagai ujung tombak pelayanan kesehatan primer di Indonesia
Perancangan UI/UX Aplikasi Mobile untuk Pencegah Stunting pada Anak di Indonesia Menggunakan Metode Design Thinking Lukmana, Hen Hen; Al-Husaini, Muhamad
METHOMIKA: Jurnal Manajemen Informatika & Komputerisasi Akuntansi Vol. 8 No. 2 (2024): METHOMIKA: Jurnal Manajemen Informatika & Komputersisasi Akuntansi
Publisher : Universitas Methodist Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46880/jmika.Vol8No2.pp187-198

Abstract

Stunting, a chronic nutritional problem in Indonesia with a prevalence rate of 24.4% among under-fives, is caused by chronic malnutrition and recurrent infections that hinder child growth. Lack of awareness about nutrition and prevention exacerbates the issue. Digital solutions can play a key role in addressing this problem by enabling online health and nutrition monitoring. This research focuses on designing a UI/UX mobile application to aid parents in monitoring and educating about stunting. The Design Thinking approach, involving stages such as Empathize, Define, Ideate, Prototype, and Test, was used to develop the application. The resulting UI/UX design achieved good user experience, with an average System Usability Scale (SUS) score of 75.375, categorizing it as grade B. The application includes educational, early detection, and consultation features to support parents, health workers, and policymakers in combating stunting in Indonesia.
Enhanced Plant Disease Detection Using Computer Vision YOLOv11: Pre-Trained Neural Network Model Application Al Husaini, Muhammad; Rachmat Raharja , Agung; Cahaya Putra , Vito Hafizh; Lukmana, Hen Hen
Journal of Computer Networks, Architecture and High Performance Computing Vol. 7 No. 1 (2025): Article Research January 2025
Publisher : Information Technology and Science (ITScience)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/cnahpc.v7i1.5146

Abstract

This study investigates the application of YOLOv11, a cutting-edge deep learning model, to enhance the detection of plant diseases. Leveraging a comprehensive dataset of 737 images depicting tomato leaves affected by various diseases, YOLOv11 was trained and evaluated on key performance metrics such as precision, recall, and mAP. Experimental results the model was trained and evaluated on key metrics including accuracy (75.6%), precision (0.80), recall (0.77), and mAP@0.5 (75.6%). Experimental through base architectural such as enhanced feature extraction with C2 modules, improved multi-scale detection using SPPF layers, and optimized non-maximum suppression techniques. These improvements enable the model to achieve stable precision and recall for each class, even in challenging scenarios with overlapping objects and diverse environmental conditions. By addressing practical usability challenges, this system offers a scalable, accessible, and impactful solution for precision agriculture, paving the way for sustainable with this pretrained model. This study underscores the potential of deep learning-based models, particularly YOLOv11, in transforming the way monitoring and disease management are approached, demonstrating its ability to stable accuracy and operational efficiency in real-world applications. Furthermore, the practical usability of the YOLOv11-based system addresses challenges in the domain of precision plant detection desease. By providing a scalable, accessible, and highly efficient solution, the model offering a significant advancement toward sustainable agricultural practices.
Aplikasi Cerdas Berbasis Website Prediksi Harga Emas dengan Implementasi Algoritma Smoothing Time Series Forecasting Al Husaini, Muhammad; Hermansyah, Aam; Purwayoga, Vega; Lukmana, Hen Hen; Ramadhan, Delvan
Data Sciences Indonesia (DSI) Vol. 2 No. 2 (2022): Article Research Volume 2 Issue 2, Desember 2022
Publisher : ITScience (Information Technology and Science)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/dsi.v2i2.1888

Abstract

Investasi emas merupakan hal yang umum dilakukan oleh masyarakat pada saat ini. Harga emas adalah salah satu hal penting yang menjadi fokus utama dalam melakukan investasi emas yang perlu akurasi ketepatan prediksi baik dalam kurun waktu minggu, hari ataupun tahun sehingga mampu memudahkan untuk menggunakan prediksi tersebut dalam berinvestasi baik untuk membeli atau menjual emas tersebut. Aplikasi berbasis web dengan implementasi algoritma time series forecasting ini dibangun untuk memudahkan dalam prediksi harga emas dengan menggunakan metode pemulusan moving average simple exponential smoothing hingga holt’s exponential dan holt’s winter’s exponential smoothing. Metode penelitian yang digunakan pada rancang bangun aplikasi berbasis web ini menggunakan metode prototype dari pengumpulan atau analisa kebutuhan sistem, membangun prototyping, mengkodekan sistem, evaluasi sistem, pengujian sistem hingga penggunaan sistem. Implementasi menggunakan algoritma pemulusan time-series forecasting yaitu menggunakan dataset yang diambil dari application programming interface (API) https://metalpriceapi.com dengan jumlah data harga emas yang digunakan sejumlah 872 data yang dilakukan pengujian akurasi menggunakan mean absolute percentage error (MAPE) untuk menguji akurasi data aktual dan prediksi dari ketiga algoritma tersebut yaitu dengan menghasilkan 5,517 % untuk metode simple exponential smoothing, 4,93 % pada metode holt’s exponential smoothing, dan 2,78 % untuk holt’s winter’s exponential smoothing. Penggunaan algoritma holt’s-winter’s menghasilkan akurasi yang lebih baik dari kedua algoritma sebelumnya dengan persentase akurasi yang baik berdasarkan pengujian akurasi mean absolute percentage error dengan nilai pengujian kurang dari 5 %.
PERANCANGAN SISTEM INFORMASI PERPUSTAKAAN DIGITAL BERBASIS WEBSITE MENGGUNAKAN METODE WATERFALL DI JURUSAN INFORMATIKA UNIVERSITAS SILIWANGI Lukmana, Hen Hen; Alhusaini, Muhamad; Purwayoga, Vega
METHOMIKA: Jurnal Manajemen Informatika & Komputerisasi Akuntansi Vol. 7 No. 2 (2023): METHOMIKA: Jurnal Manajemen Informatika & Komputersisasi Akuntansi
Publisher : Universitas Methodist Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46880/jmika.Vol7No2.pp340-346

Abstract

The COVID-19 pandemic that occurred at the end of 2019 has accelerated the application and use of technology in universities. Various academic activities, such as learning, final project work, and UTS and UAS, were completed online. But unfortunately, supporting facilities such as digital libraries are needed as a source of reference and information that can store various material needs such as ebooks and modules that can be used for the learning process and can be accessed anywhere and anytime. This is the basis for designing the Digital Library Information System to make it easier for lecturers and students to find the books and modules they need. This library information system is web-based and made with HTML, CSS, Javascript, PHP, and MySQL programming languages. The method used in the development of this digital library information system is the waterfall method with the UML (Unified Modeling Language) software approach. With the Informatics Digital Library, it is hoped that it can help students and lecturers find various references and information for the learning process.
Perancangan UI/UX Aplikasi Mobile untuk Pencegah Stunting pada Anak di Indonesia Menggunakan Metode Design Thinking Lukmana, Hen Hen; Al-Husaini, Muhamad
METHOMIKA: Jurnal Manajemen Informatika & Komputerisasi Akuntansi Vol. 8 No. 2 (2024): METHOMIKA: Jurnal Manajemen Informatika & Komputersisasi Akuntansi
Publisher : Universitas Methodist Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46880/jmika.Vol8No2.pp187-198

Abstract

Stunting, a chronic nutritional problem in Indonesia with a prevalence rate of 24.4% among under-fives, is caused by chronic malnutrition and recurrent infections that hinder child growth. Lack of awareness about nutrition and prevention exacerbates the issue. Digital solutions can play a key role in addressing this problem by enabling online health and nutrition monitoring. This research focuses on designing a UI/UX mobile application to aid parents in monitoring and educating about stunting. The Design Thinking approach, involving stages such as Empathize, Define, Ideate, Prototype, and Test, was used to develop the application. The resulting UI/UX design achieved good user experience, with an average System Usability Scale (SUS) score of 75.375, categorizing it as grade B. The application includes educational, early detection, and consultation features to support parents, health workers, and policymakers in combating stunting in Indonesia.