Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON DATA SCIENCE AND OFFICIAL STATISTICS

Geospatial Big Data Approaches to Estimate Granular Level Poverty Distribution in East Java, Indonesia using Machine Learning and Deep Learning Regressions Rifqi Ramadhan; Arie Wahyu Wijayanto; Setia Pramana
Proceedings of The International Conference on Data Science and Official Statistics Vol. 2023 No. 1 (2023): Proceedings of 2023 International Conference on Data Science and Official St
Publisher : Politeknik Statistika STIS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34123/icdsos.v2023i1.359

Abstract

One of the economic development the focus of the Indonesian government's efforts is for reducing poverty. In Indonesia, collecting poverty data uses the conventional method, the name is National Socio-Economic Survey (SUSENAS) which takes a large cost, time, and effort. To overcome these limitations, there is a need for additional data to provide more detailed poverty data. Recent studies show that the use of geospatial big data could identify poverty at a granular level, with a lower cost and faster update because of their unique and unbiased capacity to identify physical and socioeconomic phenomena. The integrated multi-source satellite imagery data such as the normalized difference vegetation index (NDVI) for detecting rural areas based on vegetation, built-up index (BUI) for identifying urban areas through building distribution, normalized difference water index (NDWI) for land cover detection, day time land surface temperature (LST) for identifying urban regions based on surface temperature, and pollutants such as carbon monoxide (CO), nitrogen dioxide (NO2), and sulfur dioxide (SO2) to evaluate economic activities based on pollution. Additionally, point of interest (POI) density and minimum POI distance are used to measure area accessibility. Therefore, the contribution of this research is to implement the utilization of geospatial big data to estimate the numbers of poverties at a granular level to the 666 sub-districts in East Java Province using machine learning and deep learning regression models. The evaluation results to estimate sub-district level poverty shows that the best model development using Support Vector Regression (SVR) in machine learning was the best root mean squared error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) values of 0.365, 0.293, and 0.032 with R-squared of 0.59 and MLP in deep learning algorithm with 0.444, 0.345, and 0.039 values of RMSE, MAE, and MAPE with R2 0.52. In addition, the results of visual identification revealed that high estimates of lower poverty are typically found in urban areas with high accessibility, and these areas are not spatially deprived areas with limited accessibility.
Time-Series Clustering of the Regencies Hotel Room Occupancy Rate in Indonesia after the COVID-19 Pandemic Ladisa Busaina; Setia Pramana; Satria Bagus Panuntun
Proceedings of The International Conference on Data Science and Official Statistics Vol. 2023 No. 1 (2023): Proceedings of 2023 International Conference on Data Science and Official St
Publisher : Politeknik Statistika STIS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34123/icdsos.v2023i1.387

Abstract

After COVID-19 pandemic, Indonesia entering the recovery era. The government provides incentives for tourism industry recovery. This policy was created because the impact of COVID-19 pandemic on tourism industry at each regencies/cities are different. This study investigates a different recovery pattern at regencies/cities across Indonesia. The data of this study consist of the room occupancy rate (ROR) from Badan Pusat Statistik (BPS) Indonesia and from web scraping monthly data from Agoda website between 1 January 2021 until 1 August 2023. The regencies/cities are clustered by ROR category using the dynamic time warping method. The result of study, there is a difference of tourism industry recovery at regencies/cities across Indonesia, which is the speed are fast, medium, or slow. This could be the result of differences of different policy in each regency/city to respond COVID-19 pandemic on their tourism industry.
An Intelligent Conversational Agent Using Self-Reflective Retrieval-Augmented Generation for Enhanced Large Language Model Support in National Accounts Learning Farhan, Muhammad; ., Yunofri; Tasriah, Etjih; Hulliyyatus Suadaa, Lya; Pramana, Setia
Proceedings of The International Conference on Data Science and Official Statistics Vol. 2025 No. 1 (2025): Proceedings of 2025 International Conference on Data Science and Official St
Publisher : Politeknik Statistika STIS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34123/icdsos.v2025i1.575

Abstract

BPS Statistics Indonesia plays a strategic role in compiling balance sheet statistics as the foundation for national policy analysis. This role requires a deep understanding of the concepts, definitions, and compilation standards outlined in the System of National Accounts (SNA) manual. However, in practice, comprehending such complex technical documents is not always straightforward. To address this challenge, this study proposes the development of an intelligent conversational agent in the form of a chatbot that implements the Self-Multimodal RAG approach. This approach integrates self-reflection mechanisms to generate more accurate and relevant responses. The evaluation was conducted using the LLM-as-a-Judge framework across four metrics: answer correctness, answer relevancy, context relevancy, and context faithfulness. Experimental results demonstrate that the Self-Reflective RAG achieved a score of 80% on the answer correctness metric, with competitive performance in terms of relevancy and faithfulness. From the chatbot implementation perspective, black-box testing confirmed that all functionalities operated as expected, while system usability testing using the CSUQ instrument yielded a score of 74.704%, indicating that the chatbot is well-accepted by users.
Business Description Categorization to the Five-Digit Indonesian Standard Classification of Business Field (KBLI) Using Machine Learning and Transfer Learning Amnur, Muh. Alfian; Muhammad Gazali, La Ode; Mumtaz Siregar, Amir; Ariya Jalaksana, Faruq; Nisa Rahayu Ananda Suwendra, Made; Fadila Utami, Nurul; Median Ramadhan, Alif; Krisela Fabrianne, Elisse; Wirata Raja Panjaitan, Eurorea; Aini Izzati, Fitri; Bintang Yuliani Manalu, Jernita; Gilang Hidayat, Muhammad; Hulliyyatus Suadaa, Lya; Yuniarto, Budi; Pramana, Setia
Proceedings of The International Conference on Data Science and Official Statistics Vol. 2025 No. 1 (2025): Proceedings of 2025 International Conference on Data Science and Official St
Publisher : Politeknik Statistika STIS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34123/icdsos.v2025i1.719

Abstract

The Indonesian Standard Classification of Business Fields (KBLI) is essential for economic statistics, yet manual classification of business descriptions to five-digit KBLI codes is time-consuming and prone to inconsistencies. This study aims to develop and compare machine learning (Support Vector Machine and Random Forest) and transfer learning  (IndoBERT) models for automating KBLI classification, supported by the preparation of synthetic and real-world datasets for model training. The synthetic data were generated using large language models, validated through human majority voting and complemented with realworld data from the National Labor Force Survey (Sakernas) and the Micro and Small Industry Survey (IMK). The findings indicate that Fine-tuned IndoBERT achieved superior performance, achieving an F1-score of 92.99% and an accuracy of 93.40% on synthetic data, alongside top-1, top-5, and top-10 accuracies of 32.93%, 54.71%, and 63.24% on real-world data. The deployment of fine-tuned IndoBERT as a RESTful API demonstrates its scalability and efficiency, presenting a reliable solution for large-scale KBLI classification in official statistics. 
Co-Authors ., Yunofri Achmad Fauzi Bagus Firmansyah Addin Maulana Aditama, Farhan Satria Aini Izzati, Fitri Alifatri, La Ode Alistin, Zharifah Dhiya Ayu Amnur, Muh. Alfian Ana Lailatul Fitriyani Ana Lailatul Fitriyani Anang Kurnia Arie Wahyu Wijayanto Arif Handoyo Marsuhandi Ariya Jalaksana, Faruq Arkandana, M. Tharif Astrinariswari Rahmadian Prasetyo Astuti, Erni Tri Bintang Yuliani Manalu, Jernita Busaina, Ladisa Cahyono, Bintang Dwitya Charvia Ismi Zahrani Cholifa Fitri Annisa Dandy Adetiar Al Rizki Dede Yoga Paramartha Dede Yoga Paramartha Deli, Nensi Fitria Dewi Krismawati Dewi Krismawati Dhiar Niken Larasati Diory Paulus Pamanik Erni Tri Astuti Erwin Tanur Fadila Utami, Nurul Fajar Fathur Rachman Fajar Fatur Rachman Farakh Khoirotun Nasida Farhan Y. Hidayat Fitriyani, Ana Lailatul Fitriyyah, Nur Retno Geri Yesa Ermawan Gilang Hidayat, Muhammad Hady Suryono Hanafi, Zulfaning Tyas Hardiyanta, I Komang Y. Hendrawan, Daffa Hidayat, Farhan Y. Hizir Sofyan Hulliyyatus Suadaa, Lya I Komang Y. Hardiyanta I Nyoman Setiawan Imam Habib Pamungkas Jane, Giani Jovita Khairani, Fitri Krisela Fabrianne, Elisse Krismawati, Dewi Ladisa Busaina Linta Ifada Linta Ifada Maftukhatul Qomariyah Virati Magfirah, Deanty Fatihatul Mariel, Wahyu Calvin Frans Maulana Faris Median Ramadhan, Alif Muhammad Farhan Muhammad Gazali, La Ode Muhammad Nur Aidi Muhammad Tharif Arkandana Mumtaz Siregar, Amir Munaf, Alfatihah Reno Maulani Nuryaningsih Soekri Putri Nasiya Alifah Utami Nazuli, Muhammad Fachry Nensi Fitria Deli Nisa Rahayu Ananda Suwendra, Made Nora Dzulvawan Novandra, Rio Nur Retno Fitriyyah Nurmalasari, Mieke Nurtia Nurtia Nurwijayanti Oktari, Rina S. Panuntun, Satria Bagus Paramartha, Dede Yoga Putro, Dimas Hutomo Rahman, Dimas Haafizh Rahmaniar, Masna Novita Rifqi Ramadhan Rimadeni, Yeni Rina S. Oktari Rini Rahani Rutba, Sita Aliya Safrizal Rahman Safrizal Rahman, Safrizal Salim Satriajati Salwa Rizqina Putri Satria Bagus Panuntun Satria Bagus Panuntun Satria Bagus Panuntun Satria Bagus Panuntun Silalahi, Agatha Siswantining, Titin SITI MARIYAH Siti Mariyah Soemarso, Ditoprasetyo Rusharsono Suadaa, Lya Hulliyyatus Sugiri Suhendra Widi Prayoga Takdir Tasriah, Etjih Thosan Girisona Suganda Thosan Girisona Suganda Tigor Nirman Simanjuntak Titin Siswantining Usman Bustaman Usman Bustaman Utami, Nandya Rezky Wahyu Calvin Frans Mariel Wirata Raja Panjaitan, Eurorea Wiwin Srimulyani Yuniarti Yuniarti Yuniarto, Budi Zen, Rizqi Annisa