Claim Missing Document
Check
Articles

Found 8 Documents
Search

UPPER–STRUCTURE ANALYSIS OF BTS TOWER ON HIGH WIND SPEED AREA Cahyono, Heru Setiyo; Mulyono, Julius; Carina, Annisa'; Hendy Wicaksono, Mochammad
DEARSIP : Journal of Architecture and Civil Vol 4 No 02 (2024): Volume 04 No. 02 (November) 2024
Publisher : Faculty of Engineering, Universitas Islam Darul Ulum Lamongan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52166/dearsip.v4i02.7800

Abstract

Media transmission (Telcom) tower could be a media transmission building structure that employments a combination of steel outlines as its development fabric. Media transmission towers work as a back for a few media transmission types of gear for transmitting signals that back the cellular communication frameworks that we continuously utilize so remote. Communication. In tower planning, the prevailing powerful stack is wind stack since wind may be a sidelong stack that encompasses a tall affectability to steel development buildings (incorporates a mass that tends to be light). The tallness of the tower that's made depends on the area of the tower itself. The most issue in this inquire about is how to dissect the tower upper–structure in arrange to determine whether it is solid or not to preserve Wind load analysis on BTS (Base Transceiver Station) towers is one of the important aspects in the design of telecommunication tower structures. Wind load can affect the stability and strength of the tower, mainly due to the height of the tower and the nature of the load which tends to change according to the wind speed and the shape of the tower. Study in this research will is about ”Upper–Structure Analysis of Bts Tower on High Wind Speed Area” as a solution to the problems that often occur in the field and until now still often appear structural infeasibility in the selection of construction systems for BTS Tower planning. Results for anlaysis for each joints are : Anchor Bolt Dimensions : 32 mm X 130 cm X 9 units ; Base Plate Dimensions : 50 cm X 50 cm X 32 mm ; Bolts Dimensions for Anchor Joint Type 1 : 16 mm X 40 mm X 5 units ; Bolts Dimensions for Anchor Joint Type 2 : 16 mm X 40 mm X 4 units ; olts Dimensions for Anchor Joint Type 3 : 16 mm X 40 mm X 5 units ; Bolts Dimensions for Anchor Joint Type 4 : 16 mm X 40 mm X 2 units ; Bolts Dimensions for Anchor Joint Type 5 : 16 mm X 40 mm X 2 units ; Bolts Dimensions for Anchor Joint Type 6 : 16 mm X 40 mm X 2 units ; Couple Plate Dimensions : 60 cm ; Bolts Dimension : L 200 X 15 + L 80 x 8.
MENINGKATKAN STABILITAS LAHAN INDUSTRI PESISIR MELALUI TIMBUNAN BATU KAPUR: Studi Kasus Geoteknik dan Keberlanjutan di JIIPE, Gresik, Jawa Timur Cahyono, Heru Setiyo; Ihwalrezky, Zsagheta; Wicaksono, Mochammad Hendy
Menara: Jurnal Teknik Sipil Vol. 20 No. 2 (2025): Menara : Jurnal Teknik Sipil
Publisher : Teknik Sipil, Fakultas Teknik Universitas Negeri Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21009/jmenara.v20i2.55022

Abstract

Penelitinan ini mengevaluasi batu kapur lokal sebagai solusi berkelanjutan untuk stabilisasi lahan reklamasi pesisir di JIIPE, Gresik, yang menghadapi tantangan tanah lunak, plastisitas tinggi, dan penurunan permukaan. Melalui uji laboratorium (ASTM/SNI), eksperimen lapangan, dan pemodelan pada area 5 hektar, penelitian mengkaji kelayakan teknis, lingkungan, dan ekonomi material tersebut. Karakterisasi laboratorium menunjukkan sifat optimal Lime Stone: struktur bergradasi baik (65% kerikil, 30% pasir), kandungan karbonat 85%, dan kepadatan kering maksimum 19,8 kN/m³ pada kadar air optimum 12,5%. Implementasi lapangan mencapai pemadatan 95%, mengurangi penurunan segera 57% (12,3 mm vs. 28,7 mm pada tanah asli) dan membatasi penurunan konsolidasi hingga 45 mm dalam 10 tahun (sesuai SNI 8460:2017). Daya dukung ultimat meningkat menjadi 1.850 kPa (Faktor Keamanan = 9,25), melebihi kebutuhan industri, dengan konduktivitas hidraulik 1,2 × 10⁻⁴ cm/s untuk mitigasi likuifaksi. Secara ekonomi, batu kapur menurunkan biaya material 30% (Rp. 85.000/m³) dan emisi transportasi 45%. Pemantauan lingkungan mencatat tidak ada dampak buruk pada air tanah (pH 6,8–7,2). Dengan skalabilitas sebesar 2.000.000 m³ dan ketahanan beban dinamis, Lime Stone menjadi alternatif berkelanjutan pengganti pasir dan kerikil. Temuan ini menawarkan model replikabel untuk pengembangan industri pesisir di negara berkembang yang selaras dengan SDG 9 dan 13.
Retaining Wall Innovation of Stone and Reinforced Concrete to Stand Guard Against Landslides and Earthquakes Cahyono, Heru Setiyo; Arifin, Achmad Saiful; Ingsih, Ita Suhermin; Saefudin, Ruli; Mustofa, Imam
Journal Innovation of Civil Engineering (JICE) Vol 6 No 1 (2025)
Publisher : Department of Civil Engineering, Faculty of Engineering, Universitas Islam Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33474/jice.v6i1.23487

Abstract

In the landslide–prone terrains of Puri District, East Java, engineers have crafted a groundbreaking solution to a life–threatening problem: a hybrid retaining wall that fuses traditional batu kali masonry with reinforced concrete, designed to outlast both relentless soil creep and violent earthquakes. Standing 4.25 meters tall and stretching 20 meters across a fragile slope, this structure—embedded 1.5 meters into the earth—defies seismic forces amplified by climate change, withstanding horizontal accelerations of 0.19g and shear forces that spike 388% during quakes. Rigorous analysis reveals its secret: D16 steel bars, spaced as tight as 100 mm at stress hotspots, work in concert with locally quarried stone to balance cost and resilience. The wall’s success lies in numbers—sliding safety factors of 4.02 (normal) and 1.78 (seismic), bearing pressures grazing 99.9% of limits without failure—but its true victory is human. Shielding a riverside community from catastrophic landslides, it ensures roads stay open, homes remain intact, and daily life flows uninterrupted. As Indonesia battles rising rainfall and tectonic unrest, this innovation offers a replicable blueprint: marrying ancestral building wisdom with 21st–century engineering to turn vulnerability into durability. Keywords: Retaining Wall; Seismic Condition; Landslide Mitigation; Masonry Structure; Sustainable Infrastructure.
Analisis Sub-Struktur Menara BTS pada Area dengan Daya Dukung Tanah yang Rendah Cahyono, Heru Setiyo; Arief, Lukman; Soedjarwoko, Endrik; Handini, Devi Ratna
Bentang : Jurnal Teoritis dan Terapan Bidang Rekayasa Sipil Vol 13 No 2 (2025): BENTANG Jurnal Teoritis dan Terapan Bidang Rekayasa Sipil (July 2025)
Publisher : Universitas Islam 45

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33558/bentang.v13i2.10805

Abstract

The construction of BTS towers to fulfill equitable communication requires analysis of structural construction calculations so the tower can be standing properly in locations that have low soil bearing capacity. This research aims to analyze the design of the BTS tower sub-structure to withstand in structural loads, wind, overturning, and uplift forces so the tower can be standing properly. To achieve the research objectives, studies and analyses were conducted through literature study, load analysis, structural modeling through software analysis and interaction diagrams, evaluation of soil bearing capacity, and verification of applicable construction standards in Indonesia. The analysis shows the dead load of the sub-structure, the overturning moment of 6.539 x 10³ kN.m in the X direction and 5.352 x 10³ kN.m in the Y direction meet the safety value of 1, thus ensuring stability according to SNI 8460: 2017. The maximum ground pressure is 97,808 kN/m², below the required 294,200 kN/m² at a depth of 1.4 m, with safety factors of soil bearing capacity (3.008), shear capacity (2.897), and shear strength (1.5) all meeting safety standards. The reinforcement analysis follows SNI 03: 2847-2019, specifying that D16-200 reinforcement is required for bottom and top with a ratio of 0.002 and 0.001. Torsional shear for axial (1,225 x 10³ kN.m) and compression (1,578 x 10³ kN.m) stress conditions, as well as ratios exceeding 1% ensure the safety of the support. Overall all structural elements meet the safety requirements, ensure the stability of the tower and comply with relevant standards.
EVALUASI JUMLAH DAN BIAYA OPERASIONAL ALAT BERAT PADA PROYEK REVITASLISASI SUNGAI (Studi Kasus Proyek CWP – 3DJK Wulan River Improvement Works Package III, BBWS Pemali–Juana, Kabupaten Demak–Kudus–Jepara, Jawa Tengah) Khomsiati, Nur Latifah; Cahyono, Heru Setiyo; Ihwalrezky, Zhagheta; Saefudin, Ruli
Journal Innovation of Civil Engineering (JICE) Vol 6 No 1 (2025)
Publisher : Department of Civil Engineering, Faculty of Engineering, Universitas Islam Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33474/jice.v6i1.23532

Abstract

This study evaluates the quantity and operational costs of heavy equipment in the Wulan River Revitalization Project (CWP–3DJK) across Demak, Kudus, and Jepara, aiming to identify factors hindering efficiency and performance. Using a mixed–methods case study (quantitative analysis, field observations, interviews, and document reviews), results show Excavator productivity dropped 14.3% from theoretical standards (12.67 m³/hour vs. 14.57 m³/hour), mainly due to 22% non–technical downtime from heavy rainfall, excessive sedimentation, and social conflicts. Operational costs exceeded the budget by 12.5% (Rp. 14.8 billion), driven by fuel (42%) and emergency maintenance on muddy terrain. Equipment imbalance (4 Excavators vs. 11 dump trucks) caused loading queues, reducing dump truck efficiency by 18%. Constraints included technical (sedimentation), environmental (rainfall), and social (protests), with social factors contributing 18% downtime—often overlooked in past studies. Recommendations include swamp–type excavators, 10–15% contingency funds in the Budget Plan (QS), and community dialogue forums to reduce conflicts. Practical benefits include improved budget efficiency (<5% deviation), reduced social downtime, and IoT–based real–time monitoring. Findings emphasize the need for an integrated approach combining technical, environmental, and community participation to ensure sustainable infrastructure project success in Indonesia. Keywords: Heavy Equipment; Operational Costs; River Revitalization; Productivity; Project Management.
Gasifikasi Sekam Daun Tebu dalam Upaya Penyediaan Alternatif Gas LPG di Kabupaten Malang Cahyono, Heru Setiyo; Soedjarwoko, Endrik; Cahyono, Danan Eko
Jurnal Pengabdian kepada Masyarakat Nusantara Vol. 6 No. 4 (2025): Edisi Oktober - Desember
Publisher : Lembaga Dongan Dosen

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55338/jpkmn.v6i4.7051

Abstract

Kegiatan pengabdian ini menguji penerapan gasifikasi sekam daun tebu untuk menyediakan substitusi energi rumah tangga yang praktis di Kabupaten Malang. Instalasi unit gasifier skala komunitas dipasang dan diuji di Desa Bulu Lawang (Kec. Bulu Lawang), dilaksanakan oleh PT. Bumi Bersih Berenergi bekerja sama dengan Fakultas Saintek Universitas Modern Al-Rifa’ie Malang (UMAIN). Fokus utama adalah transformasi sekam daun tebu menjadi gas bakar (syngas) yang layak menggantikan LPG dalam aktivitas memasak rumah tangga, serta membangun kapasitas masyarakat dalam pengolahan bahan bakar padat: pengeringan hingga kadar air 14 – 15%, pencacahan maksimum 3 mm, dan pelletisasi bila perlu. Hasil operasional menunjukkan rasio praktis yang ditetapkan proyek: 1 kg LPG ≈ 3,81 kg sekam daun tebu; 1 kg sekam daun ≈ 0,77 kWh; sehingga energi efektif yang disediakan oleh 3,81 kg sekam daun ≈ 2,934 kWh (ekivalen energi operasional per 1 kg LPG menurut basis lapangan proyek). Penerapan mampu menurunkan kebutuhan LPG pada keluarga sasaran, memperkaya keterampilan warga, dan mengurangi volume limbah yang sebelumnya dibakar atau dibuang. Naskah ini memaparkan metodologi, hasil uji lapang, analisis teknis, dampak sosial-ekonomi-lingkungan, serta rekomendasi skala lanjutan.
Enforcements Innovation of Shophouse Building to Sustain Resistance on High Risk Earthquakes Area Cahyono, Heru Setiyo; Mulyono, Julius; Mochammad Hendy, Wicaksono
Widya Teknik Vol. 24 No. 1 (2025): May
Publisher : Fakultas Teknik, Universitas Katolik Widya Mandala Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33508/wt.v24i1.6136

Abstract

Indonesia is one of the most seismically active regions in the world, with many of its cities located in high-risk earthquake zones. Malang, situated in East Java, lies in one of these critical seismic regions, making earthquake-resistant design and construction essential to safeguarding lives and minimizing property damage. This study explores an innovative approach to reinforcing shophouses in Malang, focusing on the use of shear reinforcement in the plastic hinge areas to improve seismic resistance. In particular, the research examines the application of high-strength shear reinforcement strategies as specified by the SNI 1727 : 2020 and SNI 2847 : 2019 standards. The SNI 1727 : 2020, and SNI 2847 : 2019 that all standards provides guidelines for structural requirements, both integral to ensuring safety and durability under seismic loads. This research will contribute to the development of safer construction methods for buildings in high-risk earthquake zones. and aims to support architects, engineers, and builders in meeting current seismic regulations while optimizing structural integrity and cost-efficiency. Obtained the value for 2nd floor plate reinforcements are left supporting reinforcements : ø 8 – 180, field reinforcements : ø 8 – 180, right supporting reinforcements : ø 8 – 250, shear reinforcements : ø 6 – 250, left supporting reinforcements : ø 8 – 180. Obtained the value for beam width (bw) = 200 mm, beam height (h) = 400 mm, concrete blanket (cb) = 40 mm, diameter of main reinforcement = 16 mm, diameter of stirrup reinforcement = 10 mm. Obtained the value for reinforcement installed : main reinforcement 6 ø - 12 mm and reinforcement installed : ø 10 - 150 mm stirrups. Built foot plate dimensions is 0.4 m X 0.3 m and X and Y direction bending reinforcement used reinforcement are D 13 – 200. Used X an Y direction shrinkage reinforcement spacing are 200 mm.
Implementation of Technical Aspects of Strengthening Existing Structural Columns Using Jacketing Fiber Reinforced Polymer (FRP) Carina, Annisa'; Oktaviastuti, Blima; Cahyono, Heru Setiyo
Reka Buana : Jurnal Ilmiah Teknik Sipil dan Teknik Kimia Vol 10, No 2 (2025): EDISI SEPTEMBER 2025
Publisher : Universitas Tribhuwana Tunggadewi Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33366/rekabuana.v10i2.7047

Abstract

Columns are vertical structural elements in construction planning and implementation, which play a crucial role in distributing loads from the superstructure to the foundation. Therefore, columns must meet the strength and safety standards stipulated in technical regulations such as SNI 2847:2019 and ACI 440.2R-17. However, in reality, structural columns are often found to have strengths that are less than required. The need to strengthen existing structural columns generally arises due to several reasons, including revisions to building functions that cause additional loads, aging buildings that begin to exhibit a decrease in structural capacity, or discrepancies between actual conditions and the initial planning design. This research was conducted on eight columns of the first floor structure of the JIIPE Tower construction project. The columns that were the object of the research are part of the main structure of a multi-story building planned as the JIIPE Tower building. Based on the results of calculations using SAP2000 for longitudinal and transverse reinforcement against the column force and geometry requirements, it is evident that the columns meet the requirements for the shortest side and the requirements for the cross-sectional dimension ratio; however, they do not meet the Axial Force Requirements. The study results show that the proper use of FRP can be an efficient and effective reinforcement method in increasing column capacity.