Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

KNN Algorithm for Identification of Tomato Disease Based on Image Segmentation Using Enhanced K-Means Clustering Nasution, Amir Saleh; Alvin, Alvin; Siregar, Ana Tince; Sinaga, Monica Sari
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 7, No. 3, August 2022
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v7i3.1486

Abstract

Image segmentation is an important process in identifying tomato diseases. The technique that is often used in this segmentation is k-means clustering. One of the main problems in this technique is the case of local minima, where the cluster that is formed is not suitable due to the incorrect selection of the initial centroid. In image data, this case will have an impact on poor segmentation results because it can erase parts that are actually important to be lost or there is still background in the recognition process, which has an impact on decreasing accuracy results. In this research, a method for image segmentation will be proposed using the k-means clustering algorithm, which has been added with the cosine similarity method as the proposed contribution. The use of the cosine method will determine the initial centroid by calculating the level of similarity of each image feature based on color and dividing them into several categories (low, medium, and high values). Based on the results obtained, the proposed algorithm is able to segment and distinguish between leaf and background images with good results, with the kNN reaching a value of 94.90% for accuracy, 99.50% for sensitivity, and 93.75% for specificity. The results obtained using the kNN method with k-means segmentation obtained a value of 92.46% for accuracy, 96.30% for sensitivity, and 91.50% for specificity. The results obtained using the kNN method without segmentation obtained a value of 90.22% for accuracy, 93.30% for sensitivity, and 89.45% for specificity.
Improving the Major Recommendation Systems: Analysis of Hybrid Naïve Bayes-based Collaborative Filtering and Fuzzy Logic Amir Saleh; Sitompul, Boy Arnol; Wijaya Laia, Laksana Febri; Sinaga, Nicholas Ferdinan
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 8, No. 4, November 2023
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v8i4`.1797

Abstract

Major recommendation systems have been widely used to assist prospective students in choosing major that matches their interests and potential. In an effort to improve the performance of the recommendation system, this study proposed to use collaborative filtering techniques with naïve Bayes approach. In addition, this study improved the input parameters using fuzzy logic in determining the recommended majors. The methodology used started from collecting user data, including gender, academic history, interests, and other relevant attributes. The data were used to train the naïve Bayes technique by estimating the probability of feature conformity between users and students in the recommended majors. However, there were problems such as uncertainty and ambiguity in user preferences for input data. The fuzzy logic method aimed to improve the input parameters to more accurately reflect the user preferences. The results of improving the input parameters by using fuzzy logic were then used in the naïve Bayes technique to obtain recommendations for the direction that best suits the user’s preferences. The final stage of this study used evaluation metrics such as precision, recall, and f1-score to measure the performance of the recommendation system in providing accurate recommendations. The use of a hybrid of naïve Bayes and fuzzy logic algorithms obtains an accuracy value of 87.27%, a precision value of 87.33%, a recall value of 87.24%, and an f1-score value of 87.26%. These results are higher than the usual naïve Bayes model applied in major recommendation systems.