Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : The Indonesian Journal of Computer Science

An Approach for Early Heart Attack Prediction Systems Using K-Means Clustering and Cosine Similarity Novita, Nanda; Saleh, Amir; Azmi, Fadhillah
The Indonesian Journal of Computer Science Vol. 12 No. 4 (2023): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v12i4.3324

Abstract

In this study, we used cosine similarity and k-means clustering to construct a system to predict heart attacks. In order to divide patient data into groups with distinct clinical profiles based on their clinical characteristics, the k-means clustering approach is used. The new patient profiles were also contrasted with predetermined risk group profiles using the cosine similarity method. Heart attack high-risk patients are those with a profile that resembles that of the high-risk category. This suggested prediction system offers numerous benefits and contributions. First, the technique helps identify individuals who are at high risk of having a heart attack, allowing for prompt intervention and treatment. Second, the technology aids in lowering the mortality and effects of a heart attack by foreseeing the possibility of one in high-risk patients. Combining the k-means clustering method and cosine similarity, this system can predict heart attacks with an accuracy and dependability of 93.71%. In order to aid medical practitioners in making wise decisions and enhancing patient care, this research offers fresh perspectives on how to understand and manage heart attacks.
Machine Learning and Fuzzy C-Means Clustering for the Identification of Tomato Diseases Saleh, Amir; Ridwan, Achmad; Gibran, M Khalil
The Indonesian Journal of Computer Science Vol. 12 No. 5 (2023): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v12i5.3379

Abstract

Diseases in tomato plants can cause economic losses in the agricultural industry. Identification of tomato plant diseases is important to choosing the right action to control their spread. In this research, we propose an approach to identify tomato plant diseases using a machine learning algorithm and lab colour space-based image segmentation using the fuzzy c-means (FCM) clustering algorithm. The segmentation method aims to separate the infected area, leaf image, and background in the tomato plant image. In the first step, the tomato image is represented in the Lab colour space, which allows for combining information on brightness (L), red-green colour components (a), and yellow-blue colour components (b). Then, the FCM algorithm is applied to segment the image. The segmentation results are then evaluated through an identification process using machine learning techniques such as k-Nearest Neighbors (kNN), Random Forest (RF), Support Vector Machine (SVM), and Naïve Bayes (NB) to measure the level of accuracy. The dataset used in this research is tomato images, which include various plant diseases obtained from the Kaggle dataset. The performance results of the proposed method show that the segmentation approach based on Lab colour space with the FCM clustering algorithm is able to identify infected areas well. The accuracy value of each machine learning method used is kNN of 85.40%, RF of 88.87%, SVM of 80.73%, and NB of 74.60%. The proposed method shows success in accurately identifying types of tomato plant diseases and obtains improvements compared to without using segmentation.
Pengembangan dan Pemanfaatan Aplikasi Literasi Digital Berbasis Android untuk Meningkatkan Kompetensi Mengajar Guru Amir Saleh; Fadhillah Azmi; Achmad Ridwan; M. Khalil Gibran
The Indonesian Journal of Computer Science Vol. 12 No. 6 (2023): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v12i6.3550

Abstract

Dalam era digital, guru perlu memiliki kompetensi pedagogis, kepribadian, profesional, dan sosial, termasuk kemampuan menggunakan teknologi. Sementara itu, pembelajaran berbasis teknologi di MTs. Al-Hijrah NU Medan belum sepenuhnya dilaksanakan karena berbagai kendala, seperti belum dimanfaatkannya aplikasi literasi digital dengan maksimal. Penelitian ini mengusulkan pengembangan aplikasi literasi digital untuk membantu guru dalam meningkatkan kemampuan mengajar dengan memanfaatkan teknologi dalam pembelajaran. Beberapa kendala yang ada terkait ketersediaan perangkat dan pemahaman guru tentang literasi digital. Pembelajaran literasi digital diperlukan untuk meningkatkan kemampuan guru dalam mengoperasikan teknologi karena hampir semua pembelajaran saat ini menggunakan media digital. Berdasarkan hasil implementasi aplikasi yang telah dikembangkan memperoleh hasil yang cukup baik, dimana memperoleh tingkat kepraktisan produk sebesar 83,13%. Sementara itu, penilaian yang diperoleh dari guru menunjukkan bahwa terdapat peningkatan sebesar 75% pada pengetahuan guru mengenai literasi digital dan peningkatan sebesar 81% pada kemampuan mereka dalam menerapkan literasi digital. Dari hasil perolehan nilai-nilai tersebut menyatakan bahwa pengembangan aplikasi yang dilakukan terbukti efektif dan mampu meningkatkan kemampuan mengajar guru.