Claim Missing Document
Check
Articles

Found 2 Documents
Search

Characterization of sheet organic mulch produced from coconut fiber, water hyacinth, and banana pseudostem fiber combinations Harahap, Nur Anisah Rizky; Nurhamiyah, Yeyen; Dewi, Ika Atsari; Jung, Young Hoon; Hamzah, Muhammad Hazwan bin; Rohma, Novita Ainur; Samudra, Rizki Putra; Pratama, Andhika Putra Agus; Lee, Yeon Ju; Suhartini, Sri
Advances in Food Science, Sustainable Agriculture and Agroindustrial Engineering (AFSSAAE) Vol 8, No 3 (2025)
Publisher : Advances in Food Science, Sustainable Agriculture and Agroindustrial Engineering (AFSSAAE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/ub.afssaae.2025.008.03.9

Abstract

This study developed a sheet-type organic mulch from coconut fiber, banana pseudostem, and water hyacinth without synthetic additives through drying, alkaline pretreatment in 1% NaOH solution for 30 minutes, pulping, molding, and oven-drying at 50 °C for 72 hours. The products were characterized for physical, mechanical, and chemical properties, including moisture and ash contents, water absorption capacity, tensile strength, and proximate, lignocellulosic, CNPK, FTIR, and SEM-EDX analyses. The raw materials showed distinct compositions: coconut fiber was rich in lignin (27.52%) and cellulose (37.87%), banana pseudostem had the highest hemicellulose (36.25%), and water hyacinth contained the greatest protein content (16.74%). Among treatments, M3P3 (70% coconut fiber: 30% banana pseudostem) exhibited the highest water absorption capacity (257.00%), while P1 (100% banana pseudostem) achieved the highest tensile strength (9.97 N). In contrast, E1 (100% water hyacinth) showed the highest moisture content (8.83%) but the lowest tensile strength (5.11 N). FTIR and SEM-EDX results confirmed the presence of hydroxyl and carbonyl functional groups and a porous surface morphology, supporting water retention and nutrient release. Overall, the composite mulch demonstrated eco-friendly, economical, and adaptive properties suitable for sustainable tropical agriculture applications.
Valorization of oil palm empty fruit bunches into activated carbon: A mini-review Agus Pratama, Andhika Putra; Rohma, Novita Ainur; Elviliana, Elviliana; Nafi'ah, Riris Waladatun; Setyawan, Hendrix Yulis; Sabrina Sunyoto, Nimas Mayang; Fatriasari, Widya; Suhartini, Sri; Jung, Young Hoon; Idrus, Syazwani; Melville, Lynsey
Advances in Food Science, Sustainable Agriculture and Agroindustrial Engineering (AFSSAAE) Vol 7, No 1 (2024)
Publisher : Advances in Food Science, Sustainable Agriculture and Agroindustrial Engineering (AFSSAAE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/ub.afssaae.2024.007.01.9

Abstract

This paper aimed to comprehensively review the potential valorization of oil palm empty fruit bunches (OPEFBs) into activated carbon and its potential application. Activated carbon is carbon processed through dual phases, including carbonization and activation. Firstly, this process converts biomass into carbon thermally with zero to little oxygen conditions. Next, the carbon needs to be activated to stimulate the formation of pores and reduce impurities. The activated carbon’s quality is influenced by the activation process, which can be done physically, chemically, or physiochemically. Activated carbon has an amorphous structure and abundant internal pore structure, thus increasing the surface area. In Indonesia, the quality of active carbon is regulated by Indonesian National Standards or SNI 06-370-1995.  The factors influencing the activation step include activator agent type,  activator agent concentration, activation ratio and time, etc. . Generally, activated carbon can be widely applied to various sectors, such as agriculture (i.e., slow-released fertilizer, fertilizer, etc.), waste treatment (i.e., adsorbent, activator in anaerobic digestion/AD, bioremediation, etc.), gas purification, ceramic membrane, etc. However, further in-depth investigation is required to determine potential scaling-up and commercialization.