Claim Missing Document
Check
Articles

Found 6 Documents
Search
Journal : Tensor: Pure and Applied Mathematics Journal

Algoritma Multi-Kelas Twin Bounded SVM Untuk Klasifikasi Pola Berny Pebo Tomasouw; Zeth Arthur Leleury
Tensor: Pure and Applied Mathematics Journal Vol 1 No 1 (2020): Tensor : Pure And Applied Mathematics Journal
Publisher : Department of Mathematics, Faculty of Mathematics and Natural Sciences, Pattimura University, Ambon, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/tensorvol1iss1pp15-24

Abstract

Pattern recognition is a process of recognizing patterns by using machine learning algorithm. Pattern recognition can be defined as a classification of data based on knowledge that already gained or information extracted from patterns. One method that can be used in pattern classification problem is SVM. In this study we introduced Twin Bounded SVM which is refinement of Twin SVM. The discussion begins with the linear Twin Bounded SVM method to solve a two-class classification problem and followed by an algorithm to solve multi-class classification problem
Perancangan Sistem Deteksi Plagiarisme Skripsi (Judul Dan Abstrak) Berbasis Matlab Menggunakan Algoritma Winnowing Monalisa E. Rijoly; Windy Pramudita; Berny Pebo Tomasouw; Zeth Arthur Leleury
Tensor: Pure and Applied Mathematics Journal Vol 2 No 2 (2021): Tensor : Pure and Applied Mathematics Journal
Publisher : Department of Mathematics, Faculty of Mathematics and Natural Sciences, Pattimura University, Ambon, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/tensorvol2iss2pp67-76

Abstract

Plagiarism is an act of plagiarizing the work of others who will then acknowledge the work as one's own work without mentioning the source of the work. This research aims to create a plagiarism detection system using the winnowing algorithm in MATLAB to prevent plagiarism in the final project of the Mathematics Department students. In order to get the best k-gram value and window size that will be used in the system, a testing process is carried out between document I (100% data) and document II (80% data) by using variations in k-gram values ​​and window sizes. The test results show that the best k-gram ​​and window size are 12 and 4.
Optimization of Assignment Problems using Hungarian Method at PT. Sicepat Express Ambon Branch (Location: Java City Kec. Ambon Bay) Ardial Meik; Venn Yan Ishak Ilwaru; Monalisa E. Rijoly; Berny Pebo Tomasouw
Tensor: Pure and Applied Mathematics Journal Vol 3 No 1 (2022): Tensor: Pure and Applied Mathematics Journal
Publisher : Department of Mathematics, Faculty of Mathematics and Natural Sciences, Pattimura University, Ambon, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/tensorvol3iss1pp23-32

Abstract

One of the special cases of problems in linear programming that is often faced by a company in allocating its employees according to their abilities is the assignment problem. The assignment problem can be solved using the Hungarian Method. In applying the Hungarian method, the number of employees assigned must be equal to the number of jobs to be completed. In this study, the Hugarian method was used to optimize the delivery time of goods from PT. SiCepat Express Ambon Branch – Java City. To solve the assignment problem at PT. SiCepat Express Ambon Branch – Java City, the required data includes employee names, destination locations, and delivery times. Before using the Hungarian method, the total delivery time of 7 employees at 10 destinations is 955 minutes. However, after using the Hungarian method, the total delivery time of 7 employees at 10 destination locations was 440 minutes. It can be seen that there are 515 minutes of time effisiency. We also Solved this assignment problem uses the QM For Windows Version 5.2 software and go the same amount of time, which is 440 minutes.
Solusi Numerik Model Sir Dengan Menggunakan Metode Runge-Kutta Orde Empat Dalam Prediksi Penyebaran Virus Covid-19 Di Provinsi Maluku Monalisa Rijoly; Rizki F. Muin; Francis Y. Rumlawang; Berny Pebo Tomasouw
Tensor: Pure and Applied Mathematics Journal Vol 3 No 2 (2022): Tensor: Pure and Applied Mathematics Journal
Publisher : Department of Mathematics, Faculty of Mathematics and Natural Sciences, Pattimura University, Ambon, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/tensorvol3iss2pp93-100

Abstract

Penelitian ini bertujuan untuk memprediksi penyebaran virus Covid-19 di Provinsi Maluku menggunakan metode Runge-Kutta orde empat. Model matematika penyebaran virus Covid-19 berbentuk sistem persamaan diferensial yang mencakup variabel Susceptible (S) yaitu populasi manusia yang rentan terinveksi virus Covid-19, Infectious (I) yaitu populasi manusia yang telah terinveksi virus Covid-19 dan Recovered (R) yaitu populasi manusia yang sudah sembuh atau yang sudah kebal terhadap virus Covid-19, yang digunakan sebagai nilai awal. Nilai sebagai nilai parameter yang diselesaikan secara numerik menggunakan metode Runge-Kutta orde empat yang dilakukan sebanyak 20 iterasi dengan waktu interval bulan menggunakan data dari Dinas Kesehatan Provinsi Maluku dan Polda Maluku tahun 2020 sampai 2021. Berdasarkan data yang diperoleh maka nilai rata-rata dari data tersebut yang digunakan sebagai nilai awal dimana , , . Nilai awal dan nilai parameter disubstitusikan kedalam solusi numerik dan disimulasikan menggunakan dan Matlab sebagai alat bantu. Nilai laju setiap kelas untuk 20 bulan kedepan yaitu untuk laju kelas individu rentan (S) sebesar 69.270 jiwa, untuk laju kelas individu terinfeksi (I) sebesar 19.167 jiwa dan untuk laju kelas individu sembuh (R) sebesar 851 jiwa. Ini berarti bahwa untuk populasi (S) dan (I) akan mengalami penurunan untuk 20 bulan kedepan sedangkan untuk populasi (R) akan mengalami kenaikan pada 20 bulan kedepan.
Penerapan Metode The Distance To The Ideal Alternative (DIA) Untuk Menyelesaikan Pegawai Di PT. Fast Food Indonesia (KFC Indonesia) Kakialy Tanah Tinggi, Ambon Monalisa Rijoly; Nona Tjie Sapulette; Berny Pebo Tomasouw; Dyana Patty
Tensor: Pure and Applied Mathematics Journal Vol 4 No 1 (2023): Tensor: Pure and Applied Mathematics Journal
Publisher : Department of Mathematics, Faculty of Mathematics and Natural Sciences, Pattimura University, Ambon, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/tensorvol4iss1pp13-20

Abstract

Penelitian ini bertujuan untuk membantu PT. Fast Food Indonesia (KFC Indonesia) untuk menyeleksi karyawan dengan menerapkan metode The Distance To The Ideal Alternative (DIA). Metode DIA merupakan metode pengambilan keputusan dengan banyak kriteria dimanfaatkan untuk menyeleksi karyawan. Berdasarkan data diperoleh hasil perhitungan metode DIA menghasilkan nilai preferensi terendah sebesar 0 yang artinya hasil perangkingan/mengindikasikan terpilih calon karyawan/ pelamar III berhak lolos seleksi penerimaan karyawan di PT. Fast Food Indonesia (KFC Indonesia) Kakialy, Ambon.
Penerapan Metode SVM Untuk Deteksi Dini Penyakit Stroke (Studi Kasus : RSUD Dr. H. Ishak Umarella Maluku Tengah dan RS Sumber Hidup-GPM) Berny Pebo Tomasouw; Francis Yunito Rumlawang
Tensor: Pure and Applied Mathematics Journal Vol 4 No 1 (2023): Tensor: Pure and Applied Mathematics Journal
Publisher : Department of Mathematics, Faculty of Mathematics and Natural Sciences, Pattimura University, Ambon, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/tensorvol4iss1pp37-44

Abstract

Stroke is a significant health problem in today's modern society. Early detection of stroke usually takes a long time. To prevent the risk of a significant disabling stroke, it is good to pay attention and recognize the symptoms of a stroke early on. In this study, the Support Vector Machine (SVM) method was used to detect stroke based on risk factors for stroke consisting of blood pressure, age, LDL, and blood sugar. Based on the results obtained, the nonlinear SVM method has a better level of accuracy than the linear SVM. This is because of the two data-sharing schemes, the linear SVM only has an accuracy rate of 81.25%, while the nonlinear SVM has an accuracy rate of 84.38%. Especially for the nonlinear SVM, the RBF kernel has a better level of accuracy than the polynomial kernel. This can be seen from the results of testing the two data sharing schemes, the RBF kernel has the best results, namely the highest accuracy rate of 84.38% and 84% respectively