Claim Missing Document
Check
Articles

Found 22 Documents
Search

Analisis Stabilitas Model SIR (Susceptibles, Infected, Recovered) Pada Penyebaran Penyakit Demam Berdarah Dengue di Provinsi Maluku Zeth Arthur Leleury; Yopi Andry Lesnussa; Johan Bruiyf Bension; Yulia S. Kakisina
Jurnal Matematika Vol 7 No 2 (2017)
Publisher : Mathematics Department, Faculty of Mathematics and Natural Sciences, Udayana University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24843/JMAT.2017.v07.i02.p91

Abstract

Health is an investment to support economic development and has an important role in efforts to reduce poverty and improve the quality of human resources. One of the diseases that often become serious problem in health sector that is Dengue Hemorrhagic Fever (DHF). In Indonesia, many mosquitoes cause dangerous DHF such as Aedes aegypti, Aedes albopictus, Aedes africanus, anopheles and others. In this study, we analyzed and applied SIR (Susceptible, Infection, Recovered) mathematical models and their interpolation to determine whether a contagious disease (DHF) can become endemic or not. Therefore, in this study aimed to determine the a special form of model of SIR to analyze the spread of DHF in Maluku Province and the stability analysis of this model and also interpolating the data of DHF transmission in Maluku Province. Furthermore, it can be obtained the characteristics of equilibrium point of each sub population. Based on the research conducted it can be concluded that from the entire population of Maluku Province is 1.686.469 vulnerable people infected with DHF and endemic disease with the basic reproduction value is 3,44.
Analisis Stabilitas dan Simulasi Model Penyebaran Penyakit HIV/AIDS Tipe SIA (Susceptible, Infected, Abstained) Zeth Arthur Leleury; Francis Yunito Rumlawang; Alva Grace Naraha
Tensor: Pure and Applied Mathematics Journal Vol 1 No 1 (2020): Tensor : Pure And Applied Mathematics Journal
Publisher : Department of Mathematics, Faculty of Mathematics and Natural Sciences, Pattimura University, Ambon, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/tensorvol1iss1pp31-40

Abstract

HIV/AIDS is a disease that continues to grow and become a global problem that requires special attention. This can be seen from the high number of cases of HIV/AIDS every year. In this study, we discussed an analysis of stability of a point equilibrium and numerical simulation for the spread of HIV/AIDS. The mathematical models that we used is SIA (Susceptibles, Infected, Abstained) model. The model of SIA assumed that sub populations infected will increase because of the influence of the transmission rate sub populations infected to sub population susceptibles. However, mode of transmission of HIV is possible if the transmission of individual of sub populations abstained to individual of sub population susceptibles. The result of the model indicate that population growth rate is determined by theese parameters: birth, death, interaction and isolation. Based on the result of the model simulation showed that the impact of the sub populations abstained would affect so reduced sub population infected.
Algoritma Multi-Kelas Twin Bounded SVM Untuk Klasifikasi Pola Berny Pebo Tomasouw; Zeth Arthur Leleury
Tensor: Pure and Applied Mathematics Journal Vol 1 No 1 (2020): Tensor : Pure And Applied Mathematics Journal
Publisher : Department of Mathematics, Faculty of Mathematics and Natural Sciences, Pattimura University, Ambon, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/tensorvol1iss1pp15-24

Abstract

Pattern recognition is a process of recognizing patterns by using machine learning algorithm. Pattern recognition can be defined as a classification of data based on knowledge that already gained or information extracted from patterns. One method that can be used in pattern classification problem is SVM. In this study we introduced Twin Bounded SVM which is refinement of Twin SVM. The discussion begins with the linear Twin Bounded SVM method to solve a two-class classification problem and followed by an algorithm to solve multi-class classification problem
Perancangan Sistem Deteksi Plagiarisme Skripsi (Judul Dan Abstrak) Berbasis Matlab Menggunakan Algoritma Winnowing Monalisa E. Rijoly; Windy Pramudita; Berny Pebo Tomasouw; Zeth Arthur Leleury
Tensor: Pure and Applied Mathematics Journal Vol 2 No 2 (2021): Tensor : Pure and Applied Mathematics Journal
Publisher : Department of Mathematics, Faculty of Mathematics and Natural Sciences, Pattimura University, Ambon, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/tensorvol2iss2pp67-76

Abstract

Plagiarism is an act of plagiarizing the work of others who will then acknowledge the work as one's own work without mentioning the source of the work. This research aims to create a plagiarism detection system using the winnowing algorithm in MATLAB to prevent plagiarism in the final project of the Mathematics Department students. In order to get the best k-gram value and window size that will be used in the system, a testing process is carried out between document I (100% data) and document II (80% data) by using variations in k-gram values ​​and window sizes. The test results show that the best k-gram ​​and window size are 12 and 4.
Basic Website Creation Training for Muhammadiyah Mamala High School Students in Central Maluku Regency Citra Fathia Palembang; Mozart Winston Talakua; Zeth Arthur Leleury; Yopi Andry Lesnussa; Francis Yunito Rumlawang; Jefri Esna Thomas Radjabaycolle; Abraham Zakharia Wattimena; Henry Willyam M. Patty
MOVE: Journal of Community Service and Engagement Vol. 1 No. 3 (2022): January 2022
Publisher : EQUATOR SINAR AKADEMIA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (108.759 KB) | DOI: 10.54408/move.v1i3.32

Abstract

The team's implementation of community service activities provides materials and training to Muhammadiyah Mamala High School students on how to easily build a website from the ground up using a content management system (CMS) until the website is successfully uploaded to the Internet (hosting), both for free and for a fee. The goal of this community service activity is for students to gain information technology knowledge that is not limited to being able to access information, but also to being able to create a container/information medium in the form of a website and, hopefully, to help the school in developing the school website in the future
Sistem Diagnosa Penyakit Dalam dengan Menggunakan Jaringan Saraf Tiruan Metode Backpropagation dan Learning Vector Quantization Zeth Arthur Leleury; Yopi Andry Lesnussa; Julianty Madiuw
Jurnal Matematika Integratif Vol 12, No 2: Oktober, 2016
Publisher : Department of Matematics, Universitas Padjadjaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3161.337 KB) | DOI: 10.24198/jmi.v12.n2.11925.89-98

Abstract

Jaringan saraf tiruan telah banyak digunakan untuk membantu menyelesaikan berbagaimacam permasalahan dalam rangka pengambilan keputusan berdasarkan pelatihan yangdiberikan. Jaringan saraf tiruan dapat diaplikasikan pada berbagai bidang dalam kehidupanmanusia, salah satunya bidang kesehatan. Dalam penelitian ini, jaringan saraf tiruandigunakan untuk mendiagnosa Penyakit Dalam dengan menggunakan metode Backpropagationdan Learning Vector Quantization yang selanjutnya akan dibandingkan hasil diagnosa darikedua metode tersebut. Data penelitian sebanyak 266 data, dengan 190 data sebagai datapelatihan dan 76 data sebagai data pengujian yang diambil dari data pasien RSUD Dr. M.Haulussy, Ambon. Dengan menggunakan metode Backpropagation tingkat keakuratandiagnosanya sebesar 61.84% sedangkan dengan menggunakan metode LVQ tingkat keakuratandiagnosanya sebesar 93.42%. Dari hasil penelitian ini metode LVQ dianggap lebih baik dalammendiagnosa Penyakit Dalam.
Perancangan Sistem Diagnosa Penyakit Saluran Pernapasan Menggunakan Metode Learning Vector Quantization (LVQ) Zeth Arthur Leleury; Salmon Notje Aulele
Jurnal Matematika Integratif Vol 12, No 1: April, 2016
Publisher : Department of Matematics, Universitas Padjadjaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (646.852 KB) | DOI: 10.24198/jmi.v12.n1.10247.1-10

Abstract

Jaringan saraf tiruan telah banyak digunakan untuk membantu menyelesaikan berbagai macam permasalahan dalam rangka pengambilan keputusan berdasarkan pelatihan yang diberikan. Aplikasijaringan saraf tiruan dapat diterapkan dalam berbagai bidang, salah satunya dalam bidang kesehatan. Learning Vector Quantization (LVQ) adalah salah satu jenis jaringan saraf tiruan yang berbasis pembelajaran kompetitif yang terawasi. Suatu lapisan kompetitif akan secara otomatis belajar untukmengklasifikasikan vektor-vektor input. Apabila vektor-vektor input memiliki jarak terdekat makavektor-vektor input tersebut akan dikelompokkan dalam kelas yang sama. Dalam penelitian ini, metodeLVQ diaplikasikan untuk mendiagnosa penyakit saluran pernapasan khususnya pada penyakitTuberculosis, Asma, Sinusitis, Bronchitis, Pneumonia, dan ISPA berdasarkan gejala-gejala dari penyakitsaluran pernapasan tersebut. Data yang digunakan dalam penelitian ini sebanyak 109 data, 60 datauntuk pelatihan dan 49 data untuk pengujian. Data pada penelitian ini didapat dari ruang rekam medisRSUD Dr. M. Haulussy Ambon. Dari beberapa pengujian menunjukkan bahwa laju pelatihan ( ) = 0,1 danreduksi laju pelatihan ( ) = 0,00001 menghasilkan nilai diagnosa terbaik dengan tingkat keakuratansebesar 95,92%.Kata kunci : Diagnosa, Learning Vector Quantization, Penyakit Saluran Pernapasan
A Stage-structure Leslie-Gower Model with Linear Harvesting and Disease in Predator Beay, Lazarus Kalvein; Leleury, Zeth Arthur; Rijoly, Monalisa E.; Lesnussa, Yopi Andry; Wattimena, Abraham Zacaria; Rahakbauw, Dorteus Lodewyik
Jambura Journal of Biomathematics (JJBM) Volume 4, Issue 2: December 2023
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37905/jjbm.v4i2.22047

Abstract

The growth dynamics of various species are affected by various aspects. Harvesting interventions and the spread of disease in species are two important aspects that affect population dynamics and it can be studied. In this work, we consider a stage-structure Leslie–Gower model with linear harvesting on the both prey and predator. Additionally, we also consider the infection aspect in the predator population. The population is divided into four subpopulations: immature prey, mature prey, susceptible predator, and infected predator. We analyze the existences and stabilities of feasible equilibrium points. Our results shown that the harvesting in prey and the disease in predator impacts the behavioral of system. The situation in the system is more complex due to disease in the predator population. Some numerical simulations are given to confirm our results.
Solusi Numerik Model SITA Menggunakan Metode Runge Kutta Fehlberg Untuk Memprediksi Penyebaran Penyakit HIV/AIDS Di Provinsi Maluku Serlaloy, Marshanda Nalurita; Rijoly, Monalisa E.; Leleury, Zeth Arthur
Proximal: Jurnal Penelitian Matematika dan Pendidikan Matematika Vol. 7 No. 2 (2024): Menjembatani Matematika dan Pendidikan Matematika menuju Pemanfaatan Berkelanju
Publisher : Universitas Cokroaminoto Palopo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30605/proximal.v7i2.4021

Abstract

This research aims to predict the spread of HIV/AIDS in Maluku Province using the Runge Kutta Fehlberg method. The mathematical model of the spread of HIV/AIDS disease is in the form of a system of differential equations that includes Susceptible (S) variable, namely individuals who are healthy but vulnerable to being infected with the HIV virus, Infected (I) variable namely individuals who are infected with the HIV virus, Treatment (T) variable namely individuals who receive antiretroviral therapy and AIDS (A) variable namely individuals who contract AIDS disease used as initial values. Values as parameter values are solved numerically using the Runge Kutta Fehlberg method performed as many as 10 iterations with an interval time of using data from Maluku Provincial Health Office and BPS-Statistics Indonesia from 2013 to 2022. Based on the data obtained, the average value of the data is used as the initial value where . The initial values and parameter values are substituted into the numerical solution and simulated using software Matlab as tools. The rate value of each class for the next 10 years is for the class rate of individuals susceptible to HIV infection (S) of 1.757.102 people, for the class rate of HIV-infected individuals (I) of 2482 people, for the class rate of individuals receiving antiretroviral treatment (ARV) (T) of 1516 people and for the class rate of individuals with AIDS (A) of 555 people. This means that the (S) and (T) populations will decrease over the next 10 years while the (I) and (A) populations will increase over the next 10 years.
Some Properties of the Interval Matrix Semiring [0,a] Patty, Dyana; Tapilatu, Stevany; Leleury, Zeth Arthur
Tensor: Pure and Applied Mathematics Journal Vol 5 No 1 (2024): Tensor: Pure and Applied Mathematics Journal
Publisher : Department of Mathematics, Faculty of Mathematics and Natural Sciences, Pattimura University, Ambon, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/tensorvol5iss1pp49-56

Abstract

Suatu himpunan yang dilengkapi operasi penjumlahan dan pergandaan disebut semiring jika adalah monoid komutatif, adalah semigrup dan berlaku sifat distributif pada . Jika diberikan yaitu himpunan semua interval dari dan didefinisikan operasi penjumlahan dan pergandaan interval pada , maka merupakan semiring dan disebut semiring interval. Selanjutnya jika diberikan himpunan matriks yang entri-entrinya adalah koleksi interval dimana dengan dan didefinisikan operasi penjumlahan dan pergandaan matriks interval pada , maka merupakan semiring dan disebut semiring matriks interval. Dalam penelitian ini akan dibahas semiring matriks interval dan akan diperoleh struktur -semiring, -submsemiring dan -ideal semiring matriks interval. Selanjutnya akan diperoleh syarat cukup agar suatu semiring matriks interval merupakan -semiring dan dijelaskan hubungan antara -ideal matriks persegi interval dan -subsemiring matriks persegi interval.