cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
jtsiskom@ce.undip.ac.id
Editorial Address
-
Location
Kota semarang,
Jawa tengah
INDONESIA
Jurnal Teknologi dan Sistem Komputer
Published by Universitas Diponegoro
ISSN : 26204002     EISSN : 23380403     DOI : -
Jurnal Teknologi dan Sistem Komputer (JTSiskom, e-ISSN: 2338-0403) adalah terbitan berkala online nasional yang diterbitkan oleh Departemen Teknik Sistem Komputer, Universitas Diponegoro, Indonesia. JTSiskom menyediakan media untuk mendiseminasikan hasil-hasil penelitian, pengembangan dan penerapannya di bidang teknologi dan sistem komputer, meliputi sistem embedded, robotika, rekayasa perangkat lunak dan jaringan komputer. Lihat fokus dan ruang lingkup JTSiskom. JTSiskom terbit 4 (empat) nomor dalam satu tahun, yaitu bulan Januari, April, Juli dan Oktober (lihat Tanggal Penting). Artikel yang dikirimkan ke jurnal ini akan ditelaah setidaknya oleh 2 (dua) orang reviewer. Pengecekan plagiasi artikel dilakukan dengan Google Scholar dan Turnitin. Artikel yang telah dinyatakan diterima akan diterbitkan dalam nomor In-Press sebelum nomor regular terbit. JTSiskom telah terindeks DOAJ, BASE, Google Scholar dan OneSearch.id Perpusnas. Lihat daftar pengindeks. Artikel yang dikirimkan harus sesuai dengan Petunjuk Penulisan JTSiskom. JTSiskom menganjurkan Penulis menggunakan aplikasi manajemen referensi, seperti Mendeley, Endnote atau lainnya. Penulis harus register ke jurnal atau jika telah teregister, dapat langsung log in dan melakukan lima langkah submisi artikel. Penulis harus mengupload Pernyataan Pengalihan Hak Cipta saat submisi. Artikel yang terbit di JTSiskom akan diberikan nomer identifier unik (DOI/Digital Object Identifier) dan tersedia serta bebas diunduh dari portal JTSiskom ini. Penulis tidak dipungut biaya baik untuk pengiriman artikel maupun pemrosesan artikel (lihat APC/Article Processing Charge). Jurnal ini mengimplementasikan sistem LOCKSS untuk pengarsipan secara terdistribusi di jaringan LOCKSS privat.
Arjuna Subject : -
Articles 12 Documents
Search results for , issue "Volume 10, Issue 2, Year 2022 (April 2022)" : 12 Documents clear
Large-scale integrated infrastructure for asynchronous microservices architecture Ramadhan, Insan; Guarddin, Gladhi
Jurnal Teknologi dan Sistem Komputer Volume 10, Issue 2, Year 2022 (April 2022)
Publisher : Department of Computer Engineering, Engineering Faculty, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jtsiskom.2022.14120

Abstract

Integrated large-scale business activities increasingly rely on the use of remote resources and services across multi-platform applications. Microservice in previous research has become a solution, but this approach still leaves a data loss problem. This research methodology proposed an architecture of data transmission managed by messaging service to prevent data loss in handling many requests to deliver a multiplatform architecture, handling the plugin services, and enabling escalation based on the requirement. As a result, this research successfully implements large-scale multiplatform Single Sign-On (SSO) infrastructure for asynchronous microservices architecture. The system test results show that the developed system can handle up to 2000 requests with 20 concurrent requests.
Edge Detection Analysis using Roberts, Sobel, Prewitt and Canny Methods Utama, Kgs Muhammad Rizky Alditra; Umar, Rusydi; Yudhana, Anton
Jurnal Teknologi dan Sistem Komputer Volume 10, Issue 2, Year 2022 (April 2022)
Publisher : Department of Computer Engineering, Engineering Faculty, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jtsiskom.2021.14209

Abstract

Edge identification in a digital image is overgrowing in line with advances in computer technology for image processing. Edge detection becomes vital in recognizing the object of an image because the edge of the object in the image contains critical information. The information obtained can be either the size or shape of the object in the image, so the edge quality must be good so that the information contained in it is not lost. This study uses edge detection with the Roberts, Sobel, Prewitt, and Canny methods. The assessment method uses visual analysis, PSNR, Histogram, and Contrast. The study shows that the calculation of PSNR on the Roberts method has the highest value, with an average of 44.19 dB. Sobel, Prewitt, and Canny operators have PSNR values above 30 dB to classify it as a good image. The histogram value with the highest value is the Sobel operator, with an average histogram value of 22.06. In contrast, the highest contrast value is the Canny operator has an average contrast value of 5.08. The Roberts and Canny operators have the best image quality.
Perbandingan Convolutional Neural Network VGG16 dan ResNet34 pada Sistem Klasifikasi Sampah Botol Hutamaputra, William; Krisnabayu, Rifky Yunus; Mawarni, Marrisaeka; Yudistira, Novanto; Bachtiar, Fitra Abdurrachman
Jurnal Teknologi dan Sistem Komputer Volume 10, Issue 2, Year 2022 (April 2022)
Publisher : Department of Computer Engineering, Engineering Faculty, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jtsiskom.2021.14045

Abstract

Hampir semua botol minuman kemasan yang beredar di masyarakat terbuat dari bahan plastik dikarenakan plastik merupakan bahan yang murah dan mudah dibentuk. Plastik adalah bahan non-organik yang sulit diuraikan sehingga botol plastik dapat menyebabkan pencemaran lingkungan. Sehingga diperlukan suatu solusi yang efektif untuk mengatasi kerusakan lingkungan yang disebabkan oleh sampah botol plastik. Salah satu solusi yag dapat dilakukan yaitu melakukan klasifikasi dan daur ulang sampah botol plastik. Pengklasifikasian sampah botol plastik dan sampah botol bukan plastik ke dalam kategori yang ditentukan sesuai dengan persyaratan kemudian didaur ulang agar dapat diolah kembali agar tidak merusak lingkungan. Artikel ini mengusulkan model VGG16 dan ResNet34 berbasis deep learning menggunakan CNN (Convolutional Neural Network) untuk mengidentifikasi dan mengklasifikasikan sampah botol. Berdasarkan hasil pengujian menggunakan Convolutional Neural Network, arsitektur VGG16 memiliki akurasi sebesar 90% dan ResNet34 memiliki akurasi sebesar 50% pada klasifikasi botol plastik dan bukan botol plastik. Masing-masing arsitektur menggunakan 10 epoch, 32 batch, 1655 gambar.
Evaluasi Sistem Informasi Manajemen Puskesmas menggunakan Model HOT-Fit Delfia, Fila; Adi, Kusworo; Purnami, Cahya Tri
Jurnal Teknologi dan Sistem Komputer Volume 10, Issue 2, Year 2022 (April 2022)
Publisher : Department of Computer Engineering, Engineering Faculty, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jtsiskom.2022.14418

Abstract

Penelitian ini mengevaluasi salah satu sistem informasi di bidang kesehatan yaitu sistem informasi manajemen Puskesmas dengan menggunakan model HOT-Fit. Metode HOT-Fit dipilih karena memberikan interpretasi penilaian yang komprehensif melalui pendekatan terhadap komponen inti suatu sistem informasi. Metode HOT-Fit mencakup: Manusia (Pengguna Sistem dan Kepuasan Pengguna), Organisasi (Struktur Organisasi dan Lingkungan Organisasi), Teknologi (Kualitas Sistem, Kualitas Informasi, dan Kualitas Layanan), serta Manfaat. Hasil penelitian menunjukkan bahwa terdapat pengaruh yang signifikan antara faktor Manusia dengan Manfaat (Sig. 0,014; Odds ratio 11,075 yang berarti faktor Manusia akan meningkatkan faktor Manfaat SIMPUS sebanyak 11,075 kali lebih tinggi). Tidak ada pengaruh yang signifikan antara Organisasi dengan Manfaat (Sig. 0,267). Tidak ada pengaruh yang signifikan antara Teknologi dengan Manfaat (Sig. 0,753).
Spatial Skyline Query Based on Surrounding Environment Untuk Data Streaming Menggunakan Apache-Spark Firzatullah, Raden Muhamad; Djatna, Taufik; Annisa, Annisa; Andrianingsih, Andrianingsih
Jurnal Teknologi dan Sistem Komputer Volume 10, Issue 2, Year 2022 (April 2022)
Publisher : Department of Computer Engineering, Engineering Faculty, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jtsiskom.2022.14268

Abstract

Previous research on Spatial Skyline Query Based on Surrounding Environment left a challenge in finding skyline objects that support the use of mobile devices. This study introduces a method that allows users to search for spatial objects dynamically. Cloud-based streaming data services are currently available to support the dynamic search of spatial skyline objects. Under these conditions, streaming data requires a longer processing time. This study aims to examine the effectiveness and efficiency of Apache-Spark in developing Spatial Skyline Query Based on Surrounding Environment in processing streaming data. Further implementation of the developed algorithm can provide better location access for users on mobile devices. Comparative analysis of algorithm execution time is performed by comparing algorithm processing on a single processor and cluster computing using various evaluation parameters. The test results on each parameter show that the computation time of the proposed algorithm on a single computation is not as good as the previous algorithm. However, in cluster computing, the proposed algorithm is superior
Computer vision for sports Adriyendi, Adriyendi
Jurnal Teknologi dan Sistem Komputer Volume 10, Issue 2, Year 2022 (April 2022)
Publisher : Department of Computer Engineering, Engineering Faculty, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jtsiskom.2022.14373

Abstract

We explore theories and applications of Computer Vision (CV) in sports. We use the method proposed included: object, research question, search process, inclusion and exclusion, quality assessment, data collection, data analysis, and characteristics of the article. We review it based on problem, methods, interpretation, finding, and future work. We analyze it based on categories: recognition, motion, detection, classification, identification, and automation. Process CV in sports included computing technology, capture motion, multi-scenarios, application of statistical sports, output prediction, object measurement, performance, and object adjudication. We found that Machine Learning (ML) and Deep Learning (DL) were widely used on CV in sports. DL approach has more advantages than the ML approach because the DL approach is supported by high-performance computing and high-quality image datasets. The implication of this research is an artificial feature-based, multi-scenarios, syntaxis method, rapid prototype, indoor localization, and gaze method as big challenge and new potential research for CV in sports. 
Prediksi Siswa Putus Sekolah Swasta Menggunakan Algoritma Bayesian Network (Studi Pada : SMA Islam Al Wahid Kepung) Krisnabayu, Rifky Yunus; Supianto, Ahmad Afif; Wicaksono, Satrio Agung
Jurnal Teknologi dan Sistem Komputer Volume 10, Issue 2, Year 2022 (April 2022)
Publisher : Department of Computer Engineering, Engineering Faculty, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jtsiskom.2022.14121

Abstract

Masalah siswa putus sekolah di SMA Islam Al Wahidmembawa dampak kepada sekolah antara lain berkurangnya bantuan operasional yang diterima, berkurangnya jumlah rombongan belajar, dan hutang biaya siswa. Mempertimbangkan dampaknya bagi sekolah, penelitian ini bertujuan mengembangkan sistem prediksi dini siswa putus sekolah. Penelitian menggunakan Bayesian Network (BN) dengan tujuan mengetahui faktor yang paling berpengaruh, di mana tugas tersebut tidak dapat diselesaikan menggunakan naive bayes. Jumlah data yang digunakan dalam penelitian ini berjumlah 77 siswa dengan 18 siswa berlabel putus sekolah. Hasil dari penelitian ini menghasilakn sebuah model dengan akurasi bernilai 0,935 dan nilai area under curve sebesar 0,948. Struktur BN memperlihatkan bahwa faktor nilai rerata, mengikuti ekstrakurikuler, dan penghasilan ayah merupakan faktor yang paling berpengaruh terhadap siswa putus sekolah. Struktur BN memperlihatkan bahwa faktor nilai rerata, mengikuti ekstrakurikuler, dan penghasilan ayah merupakan faktor yang paling berpengaruh terhadap siswa putus sekolah.
Sistem Penghitung Jumlah Orang Menggunakan Metode SSD-MobileNet dan Centroid Tracking Thohari, Afandi Nur Aziz; Karima, Aisyatul; Wibowo, Angga Wahyu; Santoso, Kuwat
Jurnal Teknologi dan Sistem Komputer Volume 10, Issue 2, Year 2022 (April 2022)
Publisher : Department of Computer Engineering, Engineering Faculty, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jtsiskom.2022.14213

Abstract

Salah satu penerapan kecerdasan buatan untuk mencegah penyebaran virus corona adalah dengan membuat sistem penghitung jumlah orang otomatis untuk mencegah kerumunan di dalam ruangan. Penelitian ini membahas mengenai pembuatan prototipe sistem penghitung jumlah orang menggunakan algoritma deep learning pada single board computer. Tujuan dari penelitian ini adalah untuk menghitung jumlah orang dalam suatu ruangan agar okupansi ruangan dapat ditekan. Kontribusi dari penelitian ini adalah mengkombinasikan dua metode visi komputer yaitu SSD-MobileNet untuk identifikasi objek orang dan centroid tracking untuk menghitung jumlah orang. Berdasarkan pengujian yang telah dilakukan menunjukan bahwa sistem telah dapat menghitung objek orang dengan akurasi 100% apabila jumlah orang yang memasuki ruangan berjumlah satu, dua, atau tiga secara bersama-sama. Kemudian sistem dapat mendeteksi objek dengan jarak maksimal 10 meter dan intensitas cahaya redup atau kurang dari 100 lux. Pada pengujian komputasi menunjukan bahwa sistem dapat memproses video dengan jumlah frame 30 fps dan kualitas video high definition (HD).
Pengaruh Berat Pengguna Terhadap Kontrol Kecepatan Motor DC Menggunakan Kontroler PID Untuk Pergerakan Kursi Roda Pintar Andreansyah, Muhammad Iqbal; Sumardi, Sumardi; Prakoso, Teguh; Riyadi, Munawar A
Jurnal Teknologi dan Sistem Komputer Volume 10, Issue 2, Year 2022 (April 2022)
Publisher : Department of Computer Engineering, Engineering Faculty, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jtsiskom.2022.14358

Abstract

Kesulitan mobilitas dialami oleh sebagian populasi. Berbagai kursi roda elektrik telah dikembangkan untuk membantu mobilitas yang dilengkapi dengan motor penggerak. Terdapat banyak faktor yang mempengaruhi kecepatan kursi roda, salah satunya berat badan pengguna. Penelitian ini bertujuan mengembangkan sistem kontrol kecepatan kursi roda dengan memperhitungkan berat badan pengguna. Penelitian ini menggunakan kontroler PID (proportional-integral-derivative) dengan metode tuning Ziegler Nichols I. Parameter optimum diperoleh Kp 7,8 Ki 9,75 dan Kd 0,78, kemudian digunakan untuk kondisi tanpa bebean, dengan beban 42,6 kg , 58,7 kg, dan 65 kg. Hasil pengujian menunjukkan bahwa sistem mampu menanggung beban 65 kg dengan overshoot maksimum 25,80%, rise time 1,2 detik, dan settling time 4,90 detik. Respon transien sistem bertambah secara linear terhadap kenaikan berat beban pengguna.
Evaluations of Emotion Analysis of Tweets using Bidirectional Long Short Term Memory and Conventional Machine Learning Kurniasih, Aliyah; Santoso, Aloysius Kurniawan; Wicaksono, Bagus Dwi; Pardede, Hilman F
Jurnal Teknologi dan Sistem Komputer Volume 10, Issue 2, Year 2022 (April 2022)
Publisher : Department of Computer Engineering, Engineering Faculty, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jtsiskom.2022.14141

Abstract

Many ideas are contained in the social media twitter as a form of expression for an event. This review can be used to determine a person's emotions based on text data so that we can determine the next action in addressing and responding to that opinion. Emotion classification on twitter can be done by recognizing the tweet text pattern of the user. In this study, representing emotions using the BiLSTM model and the Conventional Machine Learning model. The amount of learning rate and the number of layers and the optimizer used and the number of epochs in the BiLSTM model can affect the accuracy results. In the conventional machine learning model, the K value of the KNN, the selection of the naive bayes model on probalistic, and the Decision Tree variation in the values of Max-depth, min-leaves, min-split will affect the results of the accuracy value. So that we get a good model for the classification of emotional sentiments based on text data from an opinion on the tweets page. 

Page 1 of 2 | Total Record : 12


Filter by Year

2022 2022


Filter By Issues
All Issue [IN PRESS] Volume 11, Issue 1, Year 2023 (January 2023) [IN PRESS] Volume 10, Issue 4, Year 2022 (October 2022) [IN PRESS] Volume 10, Issue 3, Year 2022 (July 2022) Volume 10, Issue 2, Year 2022 (April 2022) Volume 10, Issue 1, Year 2022 (January 2022) Volume 9, Issue 4, Year 2021 (October 2021) Volume 9, Issue 3, Year 2021 (July 2021) Volume 9, Issue 2, Year 2021 (April 2021) Volume 9, Issue 1, Year 2021 (January 2021) 2021: Publication In-Press Volume 8, Issue 4, Year 2020 (October 2020) Volume 8, Issue 3, Year 2020 (July 2020) Volume 8, Issue 2, Year 2020 (April 2020) Volume 8, Issue 1, Year 2020 (January 2020) Volume 7, Issue 4, Year 2019 (October 2019) Volume 7, Issue 3, Year 2019 (July 2019) Volume 7, Issue 2, Year 2019 (April 2019) Volume 7, Issue 1, Year 2019 (January 2019) Publication In-Press (2019) Volume 6, Issue 4, Year 2018 (October 2018) Volume 6, Issue 3, Year 2018 (July 2018) Volume 6, Issue 2, Year 2018 (April 2018) Volume 6, Issue 1, Year 2018 (January 2018) Volume 5, Issue 4, Year 2017 (October 2017) Volume 5, Issue 3, Year 2017 (July 2017) Volume 5, Issue 2, Year 2017 (April 2017) Volume 5, Nomor 1, Tahun 2017 (Januari 2017) Volume 4, Issue 4, Year 2016 (October 2016) Volume 4, Nomor 3, Tahun 2016 (Agustus 2016) Volume 4, Nomor 2, Tahun 2016 (April 2016) Volume 4, Nomor 1, Tahun 2016 (Januari 2016) Volume 3, Nomor 4, Tahun 2015 (Oktober 2015) Volume 3, Nomor 3, Tahun 2015 (Agustus 2015) Volume 3, Nomor 2, Tahun 2015 (April 2015) Volume 3, Nomor 1, Tahun 2015 (Januari 2015) Volume 2, Nomor 4, Tahun 2014 (Oktober 2014) Volume 2, Nomor 3, Tahun 2014 (Agustus 2014) Volume 2, Nomor 2, Tahun 2014 (April 2014) Volume 2, Nomor 1, Tahun 2014 (Januari 2014) Volume 1, Nomor 4, Tahun 2013 (Oktober 2013) Volume 1, Nomor 3, Tahun 2013 (Agustus 2013) Volume 1, Nomor 2, Tahun 2013 (April 2013) Volume 1, Nomor 1, Tahun 2013 (Januari 2013) More Issue