cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota malang,
Jawa timur
INDONESIA
Jurnal Kajian Pembelajaran Matematika
ISSN : -     EISSN : -     DOI : -
Core Subject : Education,
Arjuna Subject : -
Articles 120 Documents
METAKOGNISI SISWA BERGAYA KOGNITIF FIELD-INDEPENDENT DALAM MEMECAHKAN MASALAH MATEMATIKA BERDASARKAN TAHAPAN POLYA Afin Nur Latifa; Subanji Subanji; Erry Hidayanto
Jurnal Kajian Pembelajaran Matematika Vol 4, No 1 (2020): Jurnal Kajian Pembelajaran Matematika
Publisher : FMIPA UNIVERSITAS NEGERI MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (722.356 KB)

Abstract

Metacognition is one important component in cognitive function and cognitive development that has a close relationship with students' problem solving abilities. One factor that can affect student metacognition but is rarely considered in mathematics learning is student cognitive style. The purpose of this study is to describe the metacognition of field-independent cognitive style students in solving mathematical problems based on Polya's stages. This research is a descriptive qualitative study using a problem solving test instrument and interview guidelines to collect data. The subjects in this study were 2 field-independent cognitive style students. The subject was asked to work on mathematical problem solving problems and then interviewed based on the results of student work. The results showed that students' metacognition awareness, regulation, and evaluation emerged during the problem solving stage. This shows that metacognition can help students with field-independent cognitive style in solving problems.
IDENTIFIKASI KESALAHAN PESERTA DIDIK KELAS VIII SMP NEGERI 1 PRAMBON DALAM MEMECAHKAN MASALAH LINGKARAN Aris Mustofa; Sudirman Sudirman; Makbul Muksar
Jurnal Kajian Pembelajaran Matematika Vol 4, No 1 (2020): Jurnal Kajian Pembelajaran Matematika
Publisher : FMIPA UNIVERSITAS NEGERI MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (431.458 KB)

Abstract

Error is a deviation from the correct algorithm. Every student has the possibility of making mistakes in working onproblem solving problems, both fact errors, concept errors and procedural errors. Mistakes made by students can beused as a reference in knowing the difficulties they experienced. Identifying the results of students' solving in solvingproblems solving problems is one of the efforts to help students who experience errors. The purpose of this study is toidentify and describe students' mistakes in solving circle problems. The research instrument used was a test. The subjectsof this study were 33 students of eighth grade 1 Prambon Junior High School. Based on the identification of students'answers that work on problem solving there are three types of mistakes made which include factual errors, concepterrors and procedural errors.
TAHAP-TAHAP BERPIKIR DALAM PEMBUKTIAN DENGAN INDUKSI MATEMATIKA DITINJAU DARI TEORI BERPIKIR SWARTZ Allen Jesica; Abdur Rahman As'ari; Santi Irawati
Jurnal Kajian Pembelajaran Matematika Vol 5, No 1 (2021): JURNAL KAJIAN PEMBELAJARAN MATEMATIKA
Publisher : FMIPA UNIVERSITAS NEGERI MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um076v5i12021p21-34

Abstract

The subjects in this research were asked to solve problems while expressing their thoughts think aloud. An interview was conducted to explore deeper thinking processes. The written data and verbal data obtained were reviewed and analyzed based on Robert Swartz's theory of the thought process which included four stages, namely, generating ideas, explaining ideas, assessing the appropriateness of ideas (assessing). the reasonableness of ideas), and complex thinking (complex thinking). The results of the validation of the assignment sheet instruments and the interview instruments used in this study obtained very valid criteria. From the results of the research, it can be explained that S1 constructs proof with mathematical induction completely and correctly.
PROFIL FOLDING BACK SISWA DALAM MENYELESAIKAN SOAL CERITA Mamluatus Sa’adah; Susiswo Susiswo; I Nengah Parta
Jurnal Kajian Pembelajaran Matematika Vol 4, No 2 (2020): Jurnal Kajian Pembelajaran Matematika
Publisher : FMIPA UNIVERSITAS NEGERI MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um076v4i22020p24-31

Abstract

The purpose of this study was to analyze and describe student folding backs in solving linear program problems based on Polya's steps. This research use desciptive qualitative approach. The subjects of this study consisted of 3 subjects, namely S1, S2, and S3 indicated that they were doing folding back. The results of this study indicate that the S1 folding back occurs. S1 is a subject who has problems when defining variables but already knows the steps to work well. Folding back is done by S1 in defining variables. Folding back is also carried out by S1 to determine the point of intersection between two lines. The intercept obtained by S1 is algebraically and geometrically different. S2 is a subject that has not been able to plan completion. Folding back is carried out by S1 in defining variables and formulating constraints. S2 writes constraints in two forms, namely equations and inequalities. Folding back is also carried out by S2 in determining the coordinates of the intersection point, drawing a graphic sketch of the inequality, determining the coordinates of the extreme points, and determining the optimum value. S3 is a subject that has been able to carry out the plan but has less accuracy. This folding back is done by S3 in writing the coordinates of a point, determining the point of intersection between two lines (because it is not careful in calculations), and when drawing inequality graphs (because it does not draw a complete graphic sketch).Keywords: folding back, problem
e-UKBM BERBASIS PROBLEM BASED LEARNING PADA MATERI SISTEM PERSAMAAN LINEAR TIGA VARIABEL Fenny Fridiana Lifira; Latifah Mustofa Lestyanto
Jurnal Kajian Pembelajaran Matematika Vol 4, No 2 (2020): Jurnal Kajian Pembelajaran Matematika
Publisher : FMIPA UNIVERSITAS NEGERI MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um076v4i22020p51-56

Abstract

Errors in solving mathematical problems occur mainly at the stage of transforming the problem. The use of e-UKBM which has not yet led students to discover the knowledge acquired is one of the causes. Hence, research and development of e-UKBM based on Problem Based Learning on the material of the Three Variable Linear Equation System that can train students' problem-solving skills can be conducted,. This study modifies the 4D model which includes the stages of defining, designing, developing and disseminate. However, the disseminate stage was not carried out due to limited research time. The e-UKBM product is tested for its validity, practicality, and effectiveness. Based on the results of the study, e-UKBM was declared valid, practical, and effective.Keywords: e-UKBM, Problem Based Learning, Three Variable Linear Equation System
PROSES BERPIKIR SISWA TIPE KEPRIBADIAN IDEALIST DALAM MENYELESAIKAN MASALAH MATEMATIKA Hikmatul Faizah Muyassaroh; Ipung Yuwono; Sudirman Sudirman
Jurnal Kajian Pembelajaran Matematika Vol 5, No 1 (2021): JURNAL KAJIAN PEMBELAJARAN MATEMATIKA
Publisher : FMIPA UNIVERSITAS NEGERI MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um076v5i12021p35-41

Abstract

Dalam hidup manusia tidak akan terlepas dari masalah. Dalam menghadapi suatu masalah, setiap orang mempunyai cara yang berbeda-beda. Proses berpikir diperlukan dalam menyelesaikan masalah. Salah satu kerangka dalam menyelesaikan masalah adalah kerangka yang dikembangkan oleh Polya. Pada kerangka tersebut terdapat 4 tahap yaitu: (1) memahami masalah, (2) menyusun rencana penyelesaian, (3) melaksanakan rencana, dan (4) memeriksa kembali hasil yang diperoleh. Proses berpikir dalam menyelesaikan masalah selanjutnya dikaji dengan Teori Piaget tentang asimilasi dan akomodasi Tipe kepribadian merupakan salah satu hal yang mempengaruhi proses berpikir seseorang. Tujuan penelitian ini adalah untuk mengetahui proses berpikir siswa yang memiliki tipe kepribadian idealist dalam menyelesaikan masalah matematika. Hasil dari penelitian ini menyatakan bahwa proses berpikir siswa yang memiliki tipe kepribadian idealist adalah: (a) terjadi asimilasi pada tahap memahami masalah, yaitu siswa dapat mengidentifikasi hal yang diketahui dan ditanya pada masalah yang diberikan, (b) terjadi asimilasi pada tahap menyusun rencana penyelesaian, yaitu siswa dapat menyebutkan rencana penyelesaian dari masalah yang diberikan berdasarkan hal yang diketahui dengan benar, (c) terjadi asimilasi pada tahap menyelesaikan masalah sesuai perencanaan, yaitu siswa menyelesaikan masalah sesuai dengan rencana yang disusun sebelumnya, dan (d) tidak terjadi asimilasi maupun akomodasi pada tahap memeriksa kembali hasil yang diperoleh, hal itu terjadi karena siswa tidak melakukan pemeriksaan kembali terhadap hasil yang diperoleh.
KOMUNIKASI MATEMATIS SISWA DALAM MENYELESAIKAN SOAL OPENENDED Lilik Fauziah; Sudirman Sudirman; Abadyo Abadyo
Jurnal Kajian Pembelajaran Matematika Vol 4, No 2 (2020): Jurnal Kajian Pembelajaran Matematika
Publisher : FMIPA UNIVERSITAS NEGERI MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um076v4i22020p1-12

Abstract

Mathematical communication is the ability to convey mathematical ideas both verbally (orally) and in writing (in writing). Mathematical communication is a standard process that should be one of the focuses of teachers' attention in mathematics learning. One way to develop students' mathematical communication is to train students to work on open-ended questions and carry out activities related to these abilities. Open-ended questions give students the opportunity to explore their ideas and thoughts in solving a problem. This study aims to describe students' mathematical communication in solving open-ended questions on Statistics material. This research uses QCAI mathematical communication criteria in the QUASAR Project and relates it to the problem solving theory according to Polya. The data were obtained through students' answers after giving open-ended questions to students. The research subjects were 3 students who were selected from groups of high, medium, and low cognitive levels. S1 gives a response by writing 15 kinds of correct answers, S2 and S3 only write down only one kind of correct answer. Subjects have various mathematical communication and their own ways of how to communicate their answers effectively to others and provide strong arguments that support their answers both orally and in writing. Keywords: matematical communication, open-ended, Polya
PENGEMBANGAN PERANGKAT PEMBELAJARAN MATEMATIKA DENGAN PENDEKATAN SAINTIFIK UNTUK MENINGKATKAN PENALARAN SISWA PADA MATERI PELUANG DI SMA KELAS XII Yusma Ria Zulaicha; Makbul Muksar; Abdur Rahman As'ari
Jurnal Kajian Pembelajaran Matematika Vol 5, No 1 (2021): JURNAL KAJIAN PEMBELAJARAN MATEMATIKA
Publisher : FMIPA UNIVERSITAS NEGERI MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um076v4i22020p57-63

Abstract

Penelitian ini dimaksudkan untuk mengembangkan perangkat pembelajaran matematika berbasis pendekatan saintifik untuk meningkatkan penalaran siswa pada materi peluang di SMA kelas XII yang valid, praktis, dan efektif. Model pengembangan yang digunakan dalam penelitian ini adalah model Dick and Carey. Perangkat pembelajaran yang dikembangkan berupa RPP dan LKS. RPP dan LKS disusun dengan mengacu pada pendekatan saintifik yang memuat 5M (mengamati, menanya, mengumpulkan informasi, menalar, mengomunikasikan). LKS yang disusun juga memuat langkah penalaran model Polya yaitu: 1) pengamatan terhadap suatu permasalahan, 2) perumusan dugaan dari permasalahan tersebut, 3) generalisasi, dan 4) verifikasi dugaan menggunakan permasalahan baru. Dari penelitian ini telah dihasilkan perangkat pembelajaran yang valid, praktis, dan efektif.Keywords: pendekatan saintifik, penalaran model Polya, model Dick and Carey, peluang
PENERAPAN MODEL PEMBELAJARAN GALLERY WALK PADA MATERI PROGRAM LINIER UNTUK MAHASISWA CALON GURU Alip Rahmawati Zahrotun Nisa; Abd. Qohar
Jurnal Kajian Pembelajaran Matematika Vol 4, No 1 (2020): Jurnal Kajian Pembelajaran Matematika
Publisher : FMIPA UNIVERSITAS NEGERI MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This study aims to describe the response of student teacher candidates to learning using the Gallery Walk method on linear program material. The method used is to apply the Gallery Walk model in the VC class of Malang State University, amounting to 29 participants in one meeting, and collecting the participants' opinions with a response sheet that will be filled out by participating students. The results show that the participants are interested in using the Gallery Walk model but they feel that the use of the Gallery Walk model does not help participants to remember the material for a long period of time.
KEMAMPUAN KOMUNIKASI MATEMATIS SISWA PADA MATERI RELASI DAN FUNGSI DI PONDOK PESANTREN ANSHOR AL SUNNAH Helmi Yanti; Zaenuri Zaenuri; Walid Walid
Jurnal Kajian Pembelajaran Matematika Vol 5, No 1 (2021): JURNAL KAJIAN PEMBELAJARAN MATEMATIKA
Publisher : FMIPA UNIVERSITAS NEGERI MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um076v5i12021p42-53

Abstract

Research purposes for describing student ability communication. Research population is purposive grade VIII Anshor Al Sunnah boarding school in academic year 2020/2021. Research sample is student grade VIII A at boarding school Anshor Al Sunnah. Research aminstrument is mathematics communication ability. The data analysis in descriptive. Research findings total is 37.5 percent student able to use terminology, mathematics notation in view of relationship within model and situation even organize a question story. Then, total 62.5 percent student able to express mathematic ideas in oral and written and demonstrating for viewing at visual total 40 percent and 22.5 percent student able to understand, interpretation and good evaluation mathematic idea within oral and written, even though in visual, percentage ability mathematic communication is 40.6 percent with Low category.

Page 6 of 12 | Total Record : 120