cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota surakarta,
Jawa tengah
INDONESIA
SAINS TANAH - Journal of Soil Science and Agroclimatology
ISSN : -     EISSN : -     DOI : -
Core Subject : Education,
Arjuna Subject : -
Articles 123 Documents
Approaches to the development of environmental standards for the content of petroleum hydrocarbons and Pb, Cr, Cu, Ni in soils of Greatest Caucasus Sergey Kolesnikov; Anna Kuzina; Tatiana Minnikova; Yulia Akimenko; Elena Nevedomaya; Tigran Ter-Micakyants; Kamil Kazeev
SAINS TANAH - Journal of Soil Science and Agroclimatology Vol 19, No 2 (2022): December
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/stjssa.v19i2.60119

Abstract

The development of tourism and leisure infrastructure results in a continuous increase of anthropogenic impact on soils of wet and dry subtropics of the Greatest Caucasus. It is very important for the region to preserve the sustainable functions of soils and ecosystems, maintain a comfortable life and recreation environment create environmentally friendly agricultural products. It is conducted studies to determine the limits of resistance of soils in wet and dry sub-tropics to priority pollutants, especially petroleum hydrocarbons and heavy metals (Pb, Cr, Cu, Ni). It was found that the soils of wet and dry subtropics for resistance by Pb, Cr, Cu, and Ni are located as follows: south-ern chernozem > typical sod-carbonate soil ≥ brown typical soil ≥ brown carbonate soil = brown leached soil ≥ leached sod-carbonate soil = yellow soil >acid brown forest soil ≥ acid brown forest podzolized soil. In terms of the degree of resistance to oil pollution, studied soils create certain series: brown carbonate ≥ brown typical = sod-carbonate leached ≥ sod-carbonate typical > southern chernozem ≥ yellow soil ≥ brown leached soil > acid brown forest soil = acid brown forest podzolized soil. Heavy metals by ecotoxicity to the soils of wet and dry subtropics from the following series: Cr> Cu ≥ Ni = Pb. Based on the degradation of ecological functions of soils, we offer regional standards of the maximum permissible content of Pb, Cr, Cu, and Ni for the main soils of wet and dry subtropics.
Changes in Rainfall Pattern in Bengawan Solo Sub-Watershed Muchamad Wahyu Trinugroho; Sigit Supadmo Arif; Sahid Susanto; Bayu Dwi Apri Nugroho; Abi Prabowo
SAINS TANAH - Journal of Soil Science and Agroclimatology Vol 19, No 2 (2022): December
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/stjssa.v19i2.61640

Abstract

Rainfed farming is vulnerable to climate variability, which changes rainfall patterns.  Rainfall variability disrupts rainfed rice cultivation because a  change in rainfall will affect the rice crop calendar. An analysis of long-term trends over a specific area is required to understand rainfall variability. The aim of this study was to assess climate variability in terms of rainfall magnitude and frequency by analyzing spatial and temporal rainfall trends in Bengawan Solo Sub-Watershed as well as the rainfed rice production. Daily rainfall data from 10 rain gauge stations over the sub-watershed area from the years 1975 to 2020 were used. The data was managed and collected by the Bengawan Solo Watershed authority. Pearson, Mann-Kendall, and Sen’s Slope tests were applied to assess the recorded data correlation, rainfall trends, and magnitude of trends into annual, monthly, and 10-day. The findings of the study indicated the spatial and temporal inhomogeneous rainfall pattern for all locations for 10-day, monthly and annual patterns. The mountainous regions at Tawang Mangu and Ngrambe stations tend to experience an upward trend (positive magnitude), while the coastal regions at Nglirip and Bojonegoro stations have a downward trend(negative magnitude). Those trends also confirmed that coastal regions would be drier than mountainous regions in the future. Understanding this rainfall trend can assist with rainfed farming strategic planning.
Influence of biochar amendments on the soil quality indicators of sandy loam soils under cassava–peanut cropping sequence in the semi-arid tropics of Northern Lombok, Indonesia Sukartono Sukartono; Bambang Hari Kusumo; Suwardji Suwardji; Arifin Aria Bakti; Mahrup Mahrup; Lolita Endang Susilowati; Fahrudin Fahrudin
SAINS TANAH - Journal of Soil Science and Agroclimatology Vol 19, No 2 (2022): December
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/stjssa.v19i2.65452

Abstract

Low nutrient retention and soil organic matter depletion are the major challenges of the cropping system in the sandy loam soils of Northern Lombok, Indonesia. A field experiment was conducted to evaluate the influence of biochar-based organic amendments on the soil quality of sandy loam soils under cassava (Manihot Esculenta, Crants)–peanut (Arachis Hypogeae L.) cropping sequence. The treatments were as follows: biochar (10 ton ha-1) and rice straw  (3 ton ha-1)  (B1);  biochar  (10 ton ha-1), cattle manure (10 ton ha-1), and rice straw (3 ton ha-1) (B2);  biochar (10 ton ha-1)  and cattle manure (10 ton ha-1) (B3);  biochar (10 ton ha-1) and cattle manure (10 ton ha-1) plus rice straw mulch (3 ton ha-1) applied on surface soils (B4),  and without organic amendments (B0) as control. Results showed that the biochar-based organic amendments significantly improved several soil quality indicators such as SOC, total N, available P, Ca, cation-exchange capacity (CEC), and aggregate stability but had no significant effect on pH, K, and Mg. Improvement in soil quality was strongly indicated by an increase in the growth and yield of cassava and peanuts. Treatments B1, B2, B3, and B4 generally had a comparable effect on soil parameters and tended to improve the growth and yield of cassava and peanuts. Cassava was responsive to treatments B2 (biochar, cattle manure, and rice straw) and B3 (biochar and cattle manure) with its actual yield of 27 tons ha−1, which is a 40% increase compared with that in the control. As a secondary crop growing after cassava, peanuts also exhibited higher yields in all amended plots compared with that in the control. The highest yield was obtained in B2 (1.38 ton ha−1), followed by B4 (1.36 ton ha−1), B1 (1.33 ton ha−1), and B3 (1.25 ton ha−1). In conclusion, the incorporation of biochar, cattle manure, and crop residues (rice straw) into soils is a promising option to maintain soil quality and sustainably produce cassava and peanuts in the sandy loam soils of the semi-arid tropics of Lombok, Indonesia.
Decade-long soil changes after the clear felling in forests of the North-Western Caucasus mountains Aslan Shkhapatsev; Valeria Vilkova; Vasiliy Soldatov; Kamil Kazeev; Sergey Kolesnikov
SAINS TANAH - Journal of Soil Science and Agroclimatology Vol 20, No 1 (2023): June
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/stjssa.v20i1.63187

Abstract

Clear-fell harvesting significantly alters ecosystem attributes at multiple spatial scales. The results of a study of the dynamics of changes in Rendzik Leptosol and Greyic Phaeozem Vertic forests in the middle mountains of the North-Western Caucasus after clear-cutting in 2010-2020 are presented. Immediately after clearing the forest, areas with varying degrees of disturbance of the soil and vegetation cover were identified in the clearings, from maximum disturbance in the central part of the clearing to slight disturbance on their periphery at different elevations of 540-1600 meters above sea level (masl). The soil covering is represented with Rendzik Leptosol and Greyic Phaeozem Vertic. Among used metrics were temperature, humidity, texture density, penetration resistance, structural and aggregate composition, and other soil parameters. On felling areas, increased temperatures and decreased soil humidity were recorded. The temperature of Rendzik Leptosol at a depth of 10-30 cm changes within the range of 1-15°С in the period 2018-2020. The terrain elevation affects the soil due to the temperature gradient significantly. Rendzik Leptosol is much colder at an elevation 1640 meters above sea level than at 1200 meters above sea level. The temperature of Phaeozem (540 meters above sea level) reaches 20°С during the summer months at a depth of 10 cm. Soils in felling have differences in structural and aggregate composition and water resistance of aggregates. The study results can be used in assessing damage to ecosystems after deforestation and developing methods for accelerating the restoration of soil properties after deforestation. The result of the study can be applied to assess the change in the state of ecosystems after forest degradation. The most informative diagnostic indicators for assessing the state of ecosystems after forest degradation are discussed in the article.
Metal Extractability Changes in Soils Under Thorny Amaranth Abdul Kadir Salam; Hery Novpriansyah; Henrie Bucharie
SAINS TANAH - Journal of Soil Science and Agroclimatology Vol 19, No 2 (2022): December
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/stjssa.v19i2.65456

Abstract

The different forms of heavy metals may be significantly extracted from soils by plant roots. In a glasshouse experiment, the shifting of soil heavy metal forms under thorny amaranth was examined. To accomplish the research goal, thorny amaranth was planted for four weeks at field water content in soils with varying Cu and Zn contents. Copper and Zn levels in the soil were measured both before and after planting. High soil Cu and Zn levels reduced this plant's height and dry biomasses. Thorny amaranth considerably reduced the exchangeable and available Cu and Zn in the soil. The soil exchangeable and available Cu and Zn had a good correlation with the plant uptakes of these elements. Copper and Zn reductions by planting significantly lower than the available Cu and Zn. A significant portion of the soil exchangeable Cu and Zn shifted to stronger bonding during the incubation time. It was demonstrated that plants absorbed more Cu and Zn from forms different than the soil-exchangeable forms.
Phenological and yield components response of major exotic maize varieties to different levels of soil bulk densities Mansoor Khan Khattak; Muhammad Hanif; Sulatn Akbar Jaddon; Inam Ul Haq; Rafi Uddin
SAINS TANAH - Journal of Soil Science and Agroclimatology Vol 19, No 2 (2022): December
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/stjssa.v19i2.59854

Abstract

Maize is the second staple food and a major cereal crop in Pakistan, but its actual yield is 25-30% less than the potential because of high soil bulk densities. Three exotic maize varieties (Baber, Pioneer-30P45, and Syngenta-6621) were evaluated under the three different soil bulk densities of 1.00 - 1.30, 1.30 - 1.60, and 1.60- 1.90 g.cm-3. Nine treatments were replicated three times, making 27 pots experiments under complete randomized design were tested. Results showed that bulk density significantly (α < 0.05) affected all the parameters of the crops except the number of days to emergence. The fewest number of days to emergence (8.4), tasseling (60.9), silking (66.9), maturity (91.9), leaves per plant (6.3), as well as the lowest shoot thickness (0.49 cm) were obtained under the 1.00 - 1.30 g.cm-3 density. This density also produced the tallest plants (174.7 cm), highest stover (5938.7 kg ha-1), grain yields (1551 kg ha-1), and harvest index (21.9 %). Conversely, most days to emergence, tasseling, silking, and maturity occurred at the bulk density of 1.60 - 1.90 g.cm-3, which also produced the shortest plants and the lowest grain stover and grain yields as well as the harvest index. It was concluded that increasing bulk density levels increase the number of days to tasseling, silking, maturity, and leaves per plant and shoot thickness. Syngenta 6621 was found late in maturity among the hybrids but produced superior stover and grain yields.
Mounding technique improves physiological performance and yield of oil palm on Spodosols Suwardi Suwardi; Lilik Sutiarso; Herry Wirianata; Andri Prima Nugroho; Iput Pradiko; Eko Noviandi Ginting; Nuzul Hijri Darlan; Muhdan Syarovy; Septa Primananda; Sukarman Sukarman
SAINS TANAH - Journal of Soil Science and Agroclimatology Vol 19, No 2 (2022): December
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/stjssa.v19i2.65460

Abstract

Spodosols have been widely used for oil palm plantations, specifically in Kalimantan, Indonesia. However, they are sub-optimal for agriculture due to a lack of water and nutrient-holding capacity and a spodic layer that limits plant root development. Therefore, proper agriculture practices are needed for oil palm to enhance its potential yield. This study aims to determine the effect of the mounding technique on the physiological performance and yield of oil palms in spodosol. The study location was well-managed, with eight blocks of oil palm plantations planted in 2008 on spodosols (Typic Haplohumod) in Central Kalimantan. The mounding technique was applied to four blocks of oil palm planted in 2015, while the remaining four were left without mounding. The parameters observed were soil moisture, transpiration, number of bunches, bunch weight, and yield. The results showed that the average moisture in the mounded soil was 4% greater than the control.  Additionally, the average daily transpiration of oil palm with the mounding was up to 2.30 mm day-1 or three times higher than the control.  The implication was that the average yield of oil palm increased from approximately 1.84 to 3.71 tons ha-1 year-1 compared to no-mounding treatments. Furthermore, the average yield was 19-66% higher than the block without the mounding application.
Land suitability assessment for agricultural crops in Enrekang, Indonesia: combination of principal component analysis and fuzzy methods Nurfadila Jamaluddin Sappe; Sumbangan Baja; Risma Neswati; Didi Rukmana
SAINS TANAH - Journal of Soil Science and Agroclimatology Vol 19, No 2 (2022): December
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/stjssa.v19i2.61973

Abstract

Land suitability assessment is essential for the efficient use of diminishing fertile agricultural land. Assessment parameters include soil texture, pH, the sum of basic cations, base saturation, cation exchange capacity, organic carbon, soil depth, slope, and mean annual temperature and precipitation data. Results showed that 76.28% and 23.26% of the total area were optimally and moderately suitable for coffee growth, respectively; 9.6% and 90% were optimally and moderately suitable for cocoa growth, respectively; 1.98%, 78.74%, and 19.26% were optimally, moderately, and marginally suitable for clove growth, respectively; and 6.68%, 86.89%, and 6.41% was optimally, moderately, and marginally suitable for pepper growth, respectively. The final land suitability index (LSI) was strongly influenced by the threshold values used by the researcher and the quality of the land indicator itself. Plant threshold values differed due to variations in plant recruitment. The main limiting factors were mean annual temperature <26°C, acidic soil pH, and low CEC. This study showed that the fuzzy method is ideal for converting the numerical data of various magnitudes into membership function values and representing land suitability. The principal component analysis is an effective method to determine the weights of multiple factors in a systematic and objective manner. The linearity test found a correlation between LSI and production with f = 0.00, indicating that the applied model can predict agricultural production and is applicable to other agricultural land management.
Spatial distribution of status silicon availability for plant and its effect to rice yield Budy Frasetya Taufik Qurrohman; Abraham Suriadikusumah; Benny Joy; Rija Sudirja
SAINS TANAH - Journal of Soil Science and Agroclimatology Vol 20, No 1 (2023): June
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/stjssa.v20i1.65862

Abstract

Silicon (Si) is a beneficial element for rice plants. However, evaluating the Si availability status of paddy soil is rarely done. This study aimed to investigate the Si availability for plant (SiAP), spatial distribution, SiAP correlations with some soil properties and the effect of SiAP status on the rice yield. This study used a survey method to collect paddy soil and water sample. The pot experiment method was used to evaluate paddy plant response to SiAP level. Based on K-means, cluster analysis showed that soil SiAP was categorized low (< 147 mg SiO2 kg-1), moderate (147 – 224 mg SiO2 kg-1) and high (> 224 mg SiO2 kg-1). The SiAP status of the paddy soil area of 26,395 hectares (25%), 61,744 hectares (59%) and 15,952 hectares (15%) was categorized as low, moderate and high, respectively. This present study revealed that the upland area paddy soil has higher SiAP than the lowland area. Total silicon dioxide (SiO2) and clay percentage were negatively correlated with the SiAP in soils. Silicon addition to the paddy soil with SiAP status showed low to high increase in rice yield by 0.2%, 3.9% and 2.7%.
Current scenario, services, concerns, and restoration perspectives of ponds in India Sneh Rajput; Arpna Kumari; Vishnu D. Rajput; Saglara S. Mandzhieva; Tatiana Minkina; Saroj Arora; Rajinder Kaur
SAINS TANAH - Journal of Soil Science and Agroclimatology Vol 20, No 1 (2023): June
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/stjssa.v20i1.64190

Abstract

Ponds are self-sustaining and self-regulating ecosystems that are a vital part of the hydrological cycle and play a variety of roles in the biosphere. Ponds are diverse, extremely dynamic, and highly productive as they offer various services like harbor biodiversity, tool for combating water scarcity, have roles in pollution mitigation and carbon sequestration. Ponds also offer sustainable solutions to support climate change amelioration and aquatic resource management. However, ponds are the most neglected aquatic ecosystems, despite their huge ecological functions. Thus, ponds are debasing at an alarming rate as a result of increased anthropogenic activities and anthropogenically driven changes in natural processes, wreaking havoc on ecological health and water quality. In this context, the major threats to ponds include the dumping of solid waste, increased urbanization, pollution, encroachment and climate change which have resulted in the deterioration of ponds over the years. Sustainable management and restoration of ponds are crucial as this ecosystem offers a wide array of ecological functions. As a result, this research aims to assess the current state of ponds in India in terms of monitoring, ecological services provided, and the various threats to which they are subjected. Further, the discussions on management and perspective restoration strategies of this substantial ecosystem are also included. Thereby, this study suggests better conservation strategies for restoration, reclamation, and sustainable utilization of ponds.

Page 11 of 13 | Total Record : 123