cover
Contact Name
Yopi Andry Lesnussa, S.Si., M.Si
Contact Email
yopi_a_lesnussa@yahoo.com
Phone
+6285243358669
Journal Mail Official
barekeng.math@yahoo.com
Editorial Address
Redaksi BAREKENG: Jurnal ilmu matematika dan terapan, Ex. UT Building, 2nd Floor, Mathematic Department, Faculty of Mathematics and Natural Sciences, University of Pattimura Jln. Ir. M. Putuhena, Kampus Unpatti, Poka - Ambon 97233, Provinsi Maluku, Indonesia Website: https://ojs3.unpatti.ac.id/index.php/barekeng/ Contact us : +62 85243358669 (Yopi) e-mail: barekeng.math@yahoo.com
Location
Kota ambon,
Maluku
INDONESIA
BAREKENG: Jurnal Ilmu Matematika dan Terapan
Published by Universitas Pattimura
ISSN : 19787227     EISSN : 26153017     DOI : https://search.crossref.org/?q=barekeng
BAREKENG: Jurnal ilmu Matematika dan Terapan is one of the scientific publication media, which publish the article related to the result of research or study in the field of Pure Mathematics and Applied Mathematics. Focus and scope of BAREKENG: Jurnal ilmu Matematika dan Terapan, as follows: - Pure Mathematics (analysis, algebra & number theory), - Applied Mathematics (Fuzzy, Artificial Neural Network, Mathematics Modeling & Simulation, Control & Optimization, Ethno-mathematics, etc.), - Statistics, - Actuarial Science, - Logic, - Geometry & Topology, - Numerical Analysis, - Mathematic Computation and - Mathematics Education. The meaning word of "BAREKENG" is one of the words from Moluccas language which means "Counting" or "Calculating". Counting is one of the main and fundamental activities in the field of Mathematics. Therefore we tried to promote the word "Barekeng" as the name of our scientific journal also to promote the culture of the Maluku Area. BAREKENG: Jurnal ilmu Matematika dan Terapan is published four (4) times a year in March, June, September and December, since 2020 and each issue consists of 15 articles. The first published since 2007 in printed version (p-ISSN: 1978-7227) and then in 2018 BAREKENG journal has published in online version (e-ISSN: 2615-3017) on website: (https://ojs3.unpatti.ac.id/index.php/barekeng/). This journal system is currently using OJS3.1.1.4 from PKP. BAREKENG: Jurnal ilmu Matematika dan Terapan has been nationally accredited at Level 3 (SINTA 3) since December 2018, based on the Direktur Jenderal Penguatan Riset dan Pengembangan, Kementerian Riset, Teknologi, dan Pendidikan Tinggi, Republik Indonesia, with Decree No. : 34 / E / KPT / 2018. In 2019, BAREKENG: Jurnal ilmu Matematika dan Terapan has been re-accredited by Direktur Jenderal Penguatan Riset dan Pengembangan, Kementerian Riset, Teknologi, dan Pendidikan Tinggi, Republik Indonesia and accredited in level 3 (SINTA 3), with Decree No.: 29 / E / KPT / 2019. BAREKENG: Jurnal ilmu Matematika dan Terapan was published by: Mathematics Department Faculty of Mathematics and Natural Sciences University of Pattimura Website: http://matematika.fmipa.unpatti.ac.id
Articles 15 Documents
Search results for , issue "Vol 14 No 3 (2020): BAREKENG: Jurnal Ilmu Matematika dan Terapan" : 15 Documents clear
PREDIKSI PENCURIAN SEPEDA MOTOR MENGGUNAKAN MODEL TIME SERIES (STUDI KASUS: POLRES KOTABUMI LAMPUNG UTARA) Pranata, Meli; Anggraini, Dian; Makbuloh, Deden; Rinaldi, Achi
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 14 No 3 (2020): BAREKENG: Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (739.924 KB) | DOI: 10.30598/barekengvol14iss3pp423-432

Abstract

Crime is a crime that violates the laws of a country or violates the norms in force in society. Theft is a form of crime. The impact of theft is a feeling of insecurity, fear and insecurity. One model used to predict the number of theft cases is the time series model. A time series model is a set of values ​​observed in an activity, event, or event where data is then arranged in chronological order. Generally, in intervals of the same length. This study aims to model the data of criminal acts of motorcycle theft in North Lampung Police with Autoregressive (AR), Moving Average (MA), and Autoregressive Integrated Moving Average (ARIMA) models. Furthermore, the best models will be used for forecasting for the next 6 months. The results of the AR model (1), AR (3) model, MA model (1), ARIMA (1,1,1), and ARIMA model (3,1,1). The MA model (1) has a significant parameter coefficient, fulfills diagnostic tests and has the smallest RMSE and AIC values ​​with an RMSE value of 6.5612926 and an AIC value of 394.82. The predicted results of the MA model (1) for the next 6 months tend to be horizontally different from the original data which tends to decrease.
APLIKASI ZERO-ONE GOAL PROGRAMMING DALAM MASALAH PEMILIHAN PROYEK PEMASARAN Silalahi, Bib Paruhum; Pertiwi, Silviana Eka; Mayyani, Hidayatul; Aliatiningtyas, Nur
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 14 No 3 (2020): BAREKENG: Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (714.145 KB) | DOI: 10.30598/barekengvol14iss3pp433-444

Abstract

Marketing management is an activity to plan and organize marketing activities in order to achieve organizational or company goals efficiently and effectively. Problems arise when there are several or many different projects that can be implemented as company marketing projects. These projects are usually categorized by several objectives. These goals can be complementary or contradictory. In operation, decision-makers are required to choose and determine the right project to achieve the target. In this paper, we discuss a programming model using the zero-one goal programming approach, a selection of marketing projects to meet many objectives and constraints, and then give examples of its implementation. Discussion and implementation include goal programming categories: nonpreemptive goal programming and preemptive goal programming
OPTIMASI ALOKASI AIR IRIGASI MENGGUNAKAN PROGRAM LINIER (STUDI KASUS BENDUNGAN BATU BULAN KEC. MOYO HULU) Hermanto, Koko; Utami, Silvia Firda; Suarantalla, Ryan
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 14 No 3 (2020): BAREKENG: Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1120.468 KB) | DOI: 10.30598/barekengvol14iss3pp445-458

Abstract

The area of the Batu Bulan dam is less than 183 hectares with capacity of 15 liters per second, the largest dam on Sumbawa island, located in Batu Bulan village, Moyo Hulu sub-district, Sumbawa regency, West Nusa Tenggara. Batu Bulan Dam is planned to be able to meet the irrigation needs, raw water, and has a potential for hydroelectric power plants. Considering the latter plans and the limited water supply from the dam, it is necessary to have a study for the optimization of the Dam's water allocation. By this study, the water allocation can be optimized and the planting patterns are managed. The goal of this research is the optimization of Batu Bulan Dam waters allocation for irrigation utilization, which is expected to improve dam operation patterns, to obtain the best cropping patterns and to obtain optimum benefits of rice and corn plants planted in the irrigation area. One method that can be used to solve the water allocation problem is linear programming with the objective is maximizing total profits and the constraints is water availability and land area
MODEL MATEMATIKA PENYEBARAN PENYAKIT PULMONARY TUBERCULOSIS DENGAN PENGGUNAAN MASKER MEDIS Inayah, Nur; Manaqib, Muhammad; Fitriyati, Nina; Yupinto, Ikhwal
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 14 No 3 (2020): BAREKENG: Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (890.372 KB) | DOI: 10.30598/barekengvol14iss3pp459-472

Abstract

This research developed a model of tuberculosis disease spread using the SIR model with addition of the medical mask usage factor. First, we create a diagram of the tuberculosis disease spread compartment through contact between individuals with medical mask usage. After that, we construct a system of nonlinear differential equations based on the compartment diagram and then find the disease-free equilibrium point, the endemic equilibrium point, and the initial reproduction number . We use linearization to analyze of the disease-free equilibrium point. The disease-free equilibrium point obtained is asymptotically stable at . The simulation result shows that the value of . It means that tuberculosis disease in the future will disappear. But if we reduce the value of medical mask usage and increase the value of tuberculosis disease spread, the value . It means that tuberculosis diseases can become an outbreak.
FIELD FORMATION OF CIRCULANT MATRIX Fahlevi, Mahfudz Reza
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 14 No 3 (2020): BAREKENG: Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (622.201 KB) | DOI: 10.30598/barekengvol14iss3pp473-480

Abstract

The axioms of fields satisfy over sets of numbers such as , , and . Generally, a set matrix is not commutative for binary multiplication properties, such that cannot satisfy of field axioms. In this paper we will discuss the circulant matrix set which satisfies the commutative properties of multiplication, then it will be shown that the definition of a field is satisfied by the circulant matrix . This can provide a new perspective on a field formed by matrix.

Page 2 of 2 | Total Record : 15


Filter by Year

2020 2020


Filter By Issues
All Issue Vol 19 No 4 (2025): BAREKENG: Journal of Mathematics and Its Application Vol 19 No 3 (2025): BAREKENG: Journal of Mathematics and Its Application Vol 19 No 2 (2025): BAREKENG: Journal of Mathematics and Its Application Vol 19 No 1 (2025): BAREKENG: Journal of Mathematics and Its Application Vol 18 No 4 (2024): BAREKENG: Journal of Mathematics and Its Application Vol 18 No 3 (2024): BAREKENG: Journal of Mathematics and Its Application Vol 18 No 2 (2024): BAREKENG: Journal of Mathematics and Its Application Vol 18 No 1 (2024): BAREKENG: Journal of Mathematics and Its Application Vol 17 No 4 (2023): BAREKENG: Journal of Mathematics and Its Applications Vol 17 No 3 (2023): BAREKENG: Journal of Mathematics and Its Applications Vol 17 No 2 (2023): BAREKENG: Journal of Mathematics and Its Applications Vol 17 No 1 (2023): BAREKENG: Journal of Mathematics and Its Applications Vol 16 No 4 (2022): BAREKENG: Journal of Mathematics and Its Applications Vol 16 No 3 (2022): BAREKENG: Journal of Mathematics and Its Applications Vol 16 No 2 (2022): BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 16 No 1 (2022): BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 15 No 4 (2021): BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 15 No 3 (2021): BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 15 No 2 (2021): BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 15 No 1 (2021): BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 14 No 4 (2020): BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 14 No 3 (2020): BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 14 No 2 (2020): BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 14 No 1 (2020): BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 13 No 3 (2019): BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 13 No 2 (2019): BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 13 No 1 (2019): BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 12 No 2 (2018): BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 12 No 1 (2018): BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 11 No 2 (2017): BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 11 No 1 (2017): BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 10 No 2 (2016): BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 10 No 1 (2016): BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 9 No 2 (2015): BAREKENG : Jurnal Ilmu Matematika dan Terapan Vol 9 No 1 (2015): BAREKENG : Jurnal Ilmu Matematika dan Terapan Vol 8 No 2 (2014): BAREKENG : Jurnal Ilmu Matematika dan Terapan Vol 8 No 1 (2014): BAREKENG : Jurnal Ilmu Matematika dan Terapan Vol 7 No 2 (2013): BAREKENG : Jurnal Ilmu Matematika dan Terapan Vol 7 No 1 (2013): BAREKENG : Jurnal Ilmu Matematika dan Terapan Vol 6 No 2 (2012): BAREKENG : Jurnal Ilmu Matematika dan Terapan Vol 6 No 1 (2012): BAREKENG : Jurnal Ilmu Matematika dan Terapan Vol 5 No 2 (2011): BAREKENG : Jurnal Ilmu Matematika dan Terapan Vol 5 No 1 (2011): BAREKENG : Jurnal Ilmu Matematika dan Terapan Vol 1 No 2 (2007): BAREKENG : Jurnal Ilmu Matematika dan Terapan Vol 1 No 1 (2007): BAREKENG : Jurnal Ilmu Matematika dan Terapan More Issue