cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Indonesian Journal of Chemistry
ISSN : 14119420     EISSN : 24601578     DOI : -
Indonesian Journal of Chemistry is an International, peer-reviewed, open access journal that publishes original research articles, review articles, as well as short communication in all areas of chemistry including applied chemistry. The journal is accredited by The Ministry of Research, Technology and Higher Education (RISTEKDIKTI) No : 21/E/KPT/2018 (in First Rank) and indexed in Scopus since 2012. Since 2018 (Volume 18), Indonesian Journal of Chemistry publish four issues (numbers) annually (February, May, August and November).
Arjuna Subject : -
Articles 1,981 Documents
Synthesis of Gold Nanoparticles Using p-Aminobenzoic Acid and p-Aminosalicylic Acid as Reducing Agent Abdul Aji; Eko Sri Kunarti; Sri Juari Santosa
Indonesian Journal of Chemistry Vol 19, No 1 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (344.216 KB) | DOI: 10.22146/ijc.26839

Abstract

Synthesis of gold nanoparticles (AuNPs) by reduction of HAuCl4 with p-aminobenzoic acid and p-aminosalicylic acid as a reducing agent was investigated. This work was conducted in order to determine the optimum condition of AuNPs synthesis and examine the effect of the hydroxyl group in p-aminosalicylic acid towards the size, shape, and stability of the synthesized gold nanoparticles (AuNPs). The optimum condition of the gold nanoparticles synthesis was determined by UV/Vis spectrophotometer, the shape and size of gold nanoparticles were measured by Transmission Electron Microscope (TEM). The synthesis process was started by reacting HAuCl4 and the reducing agents in an aqueous solution at 86 ºC. The initial gold concentration, reducing agents concentration and pH were varied in order to obtain the optimum condition. In the optimum condition, the results showed that p-aminosalicylic acid containing both hydroxyl and amino groups performed higher reduction ability compared to p-aminobenzoic acid that only containing an amino group. Reducing agents which have a hydroxyl group (p-aminosalicylic acid) could produce AuNPs with a smaller concentration of HAuCl4 than p-aminobenzoic acid. Gold nanoparticles that were synthesized with p-aminosalicylic acid were more stable and had a smaller particle size compared to its counterpart that is synthesized with p-aminobenzoic acid.
Bioconversion of Palm Oil into Biosurfactant by Halomonas meridiana BK-AB4 for the Application of Corrosion Inhibitor Ira Prima Sari; Muhammad Imam Basyiruddin; Rukman Hertadi
Indonesian Journal of Chemistry Vol 18, No 4 (2018)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (400.545 KB) | DOI: 10.22146/ijc.27040

Abstract

Biosurfactant is environmentally friendly surfactant produced by a certain microorganism in a lipid-rich medium. A previous study has shown that Halomonas meridiana BK-AB4 had the potential of a moderately halophilic bacterium in converting olive oil into biosurfactant. In the present study, the effect of changing the carbon source from olive oil into cheaper and more abundant vegetable oil, which is palm oil, for the production of the biosurfactant was evaluated. The study began by optimizing the production medium with varying the nitrogen source, the concentration of palm oil and pH. The optimum condition of biosurfactant production was observed in the medium consisted of 0.6% (w/v) of urea, 2% (v/v) of palm oil and pH 9. The resulted biosurfactant was stable at pH 7–10 and in the salt concentration of 6–15%. Biosurfactant activity in lowering air-water surface tension was measured using the Du Noüy ring method, and the value of critical micelle concentration (CMC) was about 233 ppm. At this point, the surface tension of water dropped from 68.3 to 49.8 dyne/cm. Preliminary structural analysis by using FTIR technique suggested that the resulted biosurfactant has -OH, -C-H aliphatic C=C, H-C-C and C=O groups in its structure, which is similar to that of the fatty-acid type of biosurfactant. The potential of biosurfactant as a metal corrosion inhibitor was evaluated by using electrochemical impedance spectroscopy (EIS) that measured at 30 °C. The measurement revealed that the highest inhibition level was observed at the biosurfactant concentration about 200 ppm that corresponds to the inhibition level about 53.23%.
Anaerobic Digestion of Slaughterhouse Wastewater: CO2 Capture of Biogas Using Chlorella vulgaris Nur Indradewi Oktavitri; Wahyu Budi Pratiwi; Indah Purnamasari; Mufrihatul Hayati; Mega Rosita Fitrianingtyas; Semma Hadinnata
Indonesian Journal of Chemistry Vol 19, No 1 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (254.347 KB) | DOI: 10.22146/ijc.25129

Abstract

Biogas quality from anaerobic digester influenced the combustion of biogas. A high percentage of CO2 in biogas indicates the low quality of biogas. Abatement of CO2 using microalgae, such as Chlorella vulgaris could enhance the quality of biogas. The aim of this research was to observe the ability of C. vulgaris on CO2 removal from slaughterhouse wastewater biogas. In this research, two anaerobic digesters were provided with the different condition of biogas collector bag. The first digester was combined with only biogas collector bag, while another digester was combined with C. Vulgaris. Slaughterhouse wastewater volume in each digester was 3.5 L. Observation time was 15 days and the samples were collected for every 5 days. The result showed that anaerobic digester was able to remove 63% of COD. Biogas composition of slaughterhouse wastewater after incubation for 15 days was 52.70% of air, 46.85% of CH4and 0.45% of CO2. C. Vulgaris enhanced CO2 removal from biogas up to 7%. The density of C. vulgaris decreased to 51 cell/mL. The biogas composition was probably influenced by the density of C. vulgaris.
Characteristics of Vulcanizate Rubber Using Composite Latex – Modified Cassava Starch as Filler Hari Adi Prasetya; Popy Marlina; Arbi Dimyati
Indonesian Journal of Chemistry Vol 18, No 4 (2018)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (505.615 KB) | DOI: 10.22146/ijc.25713

Abstract

The research on Characteristic of vulcanizate rubber using cassava starch composite (Manihot glaziovii) modification - latex as filler has been done. The composite variation of cassava starch concentration is 0, 40, 80, 120, 160 and 200 phr in three replications. Microstructure and elemental samples in SEM EDX and FTIR Spectroscopy method analysis, while physical properties using the standard testing equipment. The results showed that the concentration of cassava has a significant influence that is hardness, tensile strength, elongation at break, tear resistance and ozone resistance. The best rubber hardness specification was composite with modified cassava starch concentrations of 120, 160 and 200 phr with value 57, 61 and 65 Shore A. The best tensile strength of cassava starch concentration 80 and 120 phr with value 160 and 167 kg/cm2, while the best result of the extension of cassava starch concentration elongation at break 80, 120, and 160 phr is 652, 741, and 748%, and tear resistance 80, 120, 160 and 200 phr with value 14.21, 15.96, 15.16 and 14.47. The ozone resistance for all concentrations meets the requirements of commercial vulcanizate rubber. The latex-modified cassava starch composite can be used as a filler for rubber products and as an alternative to commercial fillers.
Short Time Synthesis of Titania Nanotubes: Effect of Pre-Mixing Prior Hydrothermal Indriana Kartini; Ira Nur Arba’atul Jannah; Fitri Rizki Amalia; Salim Mustofa; Eko Sri Kunarti; Respati Tri Swasono
Indonesian Journal of Chemistry Vol 19, No 1 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (19.78 KB) | DOI: 10.22146/ijc.26777

Abstract

The effect of pre-mixing by mechanical stirring before hydrothermal and hydrothermal time on the crystalline phases and morphology of titania has been studied. It was shown that nanotubes titania can be obtained after 5 h hydrothermal at 150 °C. The XRD patterns and Raman spectra of the produced powders showed the existence of anatase and titanate crystalline phases. At the longest stirring, TiO2 (B) was observed. High textural coefficient for [200] plane of anatase (TC200) confirmed oriented growth of one-dimensional anatase along [200]. All powders resulted at various stirring time were nanotubes, as confirmed by Transmission Electron Microscope (TEM). It was found that the longer the stirring, the higher the surface area of the nanotubes. All powders showed type-IV isotherm for nitrogen gas adsorption/desorption, indicating the existence of mesoporous materials. However, long hydrothermal induced the nanospheres formation, hence reducing the surface area. The band-gap of the resulted titania nanotubes were ranging from 3.11–3.16 eV. The photocatalytic performance toward the degradation of methylene blue of the titania nanotubes was higher (~50%) compared to the bulk TiO2 (~5%) under visible-light and was comparable under UV-light (~60%). These results pave a way of producing visible-sensitive TiO2 photocatalyst by altering the morphology.
Superparamagnetic Nanocomposite of Magnetite-Chitosan Using Oleic Acid as Anti Agglomeration and Glutaraldehyde as Crosslinkage Agent Suyanta Suyanta; Sutarno Sutarno; Nuryono Nuryono; Bambang Rusdiarso; Eko Sri Kunarti; Hesti Kusumastuti; Lia Kurnia
Indonesian Journal of Chemistry Vol 19, No 1 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (16.346 KB) | DOI: 10.22146/ijc.28989

Abstract

In this research magnetite was synthesized by coprecipitation method, in which solution of NH4OH was added into the solution containing a mixture of Fe2+/Fe3+ (molar ratio 1:2) until pH 11 under strong ultrasonic agitation for 30 min. The black sediment of magnetite was filtered, washed and dried. The product was then modified by using oleic acid to prevent agglomeration. Chitosan was prepared by deacetilization of chitin, whereas chitin was extracted from shrimp shell. In the synthesis of nanocomposite, 0.5 g of chitosan and 1.5 g of oleic acid modified magnetite were introduced into 100 mL of 2% acetic acid solution, followed by sonication treatment for 10 min and magnetic stirring for 20 min. In order to perform the cross-linkage reaction, solution of 2% glutaraldehyde was added into the mixture at temperature of 40 °C for 3 h. The composite was collected by magnetic separation, followed by washing with distilled water and ethanol in a row. The product was dried and characterized by XRD, FTIR, TEM and VSM methods. The result showed that the composite had good crystal structure with a cubic inverse spinel structure, monodisperse and quasi sphere in shape with diameter of 20–25 nm. It had high saturation magnetization (43.4 emu/g) and superparamagnetic property.
Optimization of o-cresol degrading microorganism and kinetics of degradation Krishnan Nhattuketty Shainy; Rajamanickam Usha
Indonesian Journal of Chemistry Vol 18, No 4 (2018)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (430.507 KB) | DOI: 10.22146/ijc.35326

Abstract

In the present study, Pseudomonas monteilii CR13 isolated from petroleum contaminated soil demonstrated the highest specific o-cresol degradation rate at all tested o-cresol concentrations and also was not disturbed by the starting substrate concentration used (o-cresol-500 mg/L). After a serial transfer of the isolate into a series of increasing o-cresol level, the organism demonstrated significant improvement on degradation ability up to 3000 mg/L. The optimum condition for the cell mass increase and biodegradation of o-cresol by Pseudomonas monteilii was in the minimal mineral medium of 3 at a pH of 6.5 and temperature 30 °C, stirring velocity of 160 rpm, and the substrate concentration of 500 mg/L. The biodegradation kinetic study was carried out by bacteria in different initial substrate concentrations (500–3000 mg/L). In the present test the μmax, Ks and the μ were found 0.332 h-1, 0.166 mg/L and 0.0282 mg/L for 500 mg/L of o-cresol, respectively. The organism is highly promising and could be used to remove high concentrations of o-cresol from highly polluted aquatic and soil regions. The cells could be immobilized on a suitable matrix and the efficiency of degradation could be effectively improved.
Immobilization of Sulfur from Different Precursors on Mini Rice-Husk-Ash Pellet Coated Chitosan Film and the Application for Mercury Vapor Uptake Muhammad Adlim; Fitri Zarlaida; Ibnu Khaldun; Rizka Dewi; Sofyatuddin Karina; Ahmad Fairuz Omar
Indonesian Journal of Chemistry Vol 19, No 2 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (297.499 KB) | DOI: 10.22146/ijc.34552

Abstract

Stabilizing elemental mercury using elemental sulfur has been a laboratory standard method but the studies in gas system are still growing. This study aims to explore the effect of different type immobilized sulfurs toward the mercury vapor uptake in a mini gas reactor. Sulfur powder, sulfur dissolved in carbon disulfide and colloidal sulfur from sodium thiosulfate-hydrochloric acid were immobilized on mini rice-husk-ash pellets that were previously coated with chitosan film. The average thinness of chitosan film was 58 µm covered the each pellet surface with dimension of 3 mm Ø x 4 mm. The trends of the mercury uptake and the rate of absorption were described as follow; Pellet-Scolloid > Pellet-SCS2 > Pellet-Spowder. The mean percentages of mercury uptake after 1 h running at 70oC were 99.36; 89.09 and 75.00 respectively. The reverse trends were observed for the size of S-particle aggregation and the amount of S found on the pellet surface.  
Forgery Detection Beef with Mice Meat (Mus musculus) in Meatballs Using Real-Time Polymerase Chain Reaction (Real-Time PCR) Primer Specific for a Target Mitochondrial DNA ND-1 Gene Tri Joko Raharjo; Gilang Aji Pratama; Irma Nuryanti; Rarastoeti Pratiwi
Indonesian Journal of Chemistry Vol 19, No 1 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (256.375 KB) | DOI: 10.22146/ijc.27542

Abstract

The expensive beef have encouraged counterfeiting beef on processed food products such as meatballs. Mice meat is frequently reported used for adulteration of beef. The accurate method is needed to ensure the supervision of food safety. This study reports the use of DNA testing to detect the presence of mice meat in meatballs with real-time PCR primer specific. PCR primers designed based on the ND-1 gene of mice mitochondrial DNA with the sequence are 5’-CGGCATCCTACAACCATTTGC-3’ and 5’-CGGCTCGTAAAGCTCCGAA-3’, respectively, target 294 bp DNA fragment. The real-time PCR can specifically detect the presence of the mice meat in a meatball with no detection the presence of beef, mutton, chicken, pork, and horsemeat. The method showed good precision shown by the CV of repeatability test at 2%, much lower than the requirement of < 25%. Real-time PCR was able to deliver positive results for as low as 0.5 ng DNA template, equivalent to 0.08 copies of genome DNA of mice equal to 80–150 copies of mtDNA. By using standard phenol-chloroform DNA isolation technique, this method is able to detect contamination of mice meat in meatball up to 1%. Three commercial meatballs confirmed contaminated by mice meat using the method.
Grafting of Heparin on Blend Membrane of Citric Acid Crosslinked Chitosan/Polyethylene Glycol-Poly Vinyl Alcohol (PVA-PEG) Retno Ariadi Lusiana; Ginanjar Argo Pambudi; Fitra Nilla Sari; Didik Setiyo Widodo; Khabibi Khabibi; Sri Isdadiyanto
Indonesian Journal of Chemistry Vol 19, No 1 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (558.158 KB) | DOI: 10.22146/ijc.30861

Abstract

Heparin, an active sulfate group material, grafted onto blend membrane citric acid cross-linked chitosan/poly (vinyl alcohol)-poly(ethylene glycol) (PVA-PEG) to improve the membrane properties. The physical tests shown that grafting reaction of citric acid crosslinked chitosan increased the mechanical strength and membrane swelling. The permeability test results, it was found that the grafted chitosan membrane was improved permeability of both urea and creatinine as compared to chitosan pure and chitosan crosslinked membrane. The negative charge of the sulphonate group of heparin increased the number of the active side of the carrier in the membrane, which then correlated to the membrane’s permeability process.

Page 85 of 199 | Total Record : 1981


Filter by Year

2001 2026


Filter By Issues
All Issue Vol 26, No 1 (2026) Vol 25, No 5 (2025) Vol 25, No 4 (2025) Vol 25, No 3 (2025) Vol 25, No 2 (2025) Vol 25, No 1 (2025) Vol 24, No 6 (2024) Vol 24, No 5 (2024) Vol 24, No 4 (2024) Vol 24, No 3 (2024) Vol 24, No 2 (2024) Vol 24, No 1 (2024) Vol 23, No 6 (2023) Vol 23, No 5 (2023) Vol 23, No 4 (2023) Vol 23, No 3 (2023) Vol 23, No 2 (2023) Vol 23, No 1 (2023) Vol 22, No 6 (2022) Vol 22, No 5 (2022) Vol 22, No 4 (2022) Vol 22, No 3 (2022) Vol 22, No 1 (2022) Vol 22, No 2 (2022) Vol 21, No 6 (2021) Vol 21, No 5 (2021) Vol 21, No 4 (2021) Vol 21, No 3 (2021) Vol 21, No 2 (2021) Vol 21, No 1 (2021) Vol 20, No 6 (2020) Vol 20, No 5 (2020) Vol 20, No 4 (2020) Vol 20, No 3 (2020) Vol 20, No 2 (2020) Vol 20, No 1 (2020) Vol 19, No 4 (2019) Vol 19, No 3 (2019) Vol 19, No 2 (2019) Vol 19, No 1 (2019) Vol 18, No 4 (2018) Vol 18, No 3 (2018) Vol 18, No 2 (2018) Vol 18, No 1 (2018) Vol 17, No 3 (2017) Vol 17, No 2 (2017) Vol 17, No 1 (2017) Vol 16, No 3 (2016) Vol 16, No 2 (2016) Vol 16, No 1 (2016) Vol 15, No 3 (2015) Vol 15, No 2 (2015) Vol 15, No 1 (2015) Vol 14, No 3 (2014) Vol 14, No 2 (2014) Vol 14, No 1 (2014) Vol 13, No 3 (2013) Vol 13, No 2 (2013) Vol 13, No 1 (2013) Vol 12, No 3 (2012) Vol 12, No 2 (2012) Vol 12, No 1 (2012) Vol 11, No 3 (2011) Vol 11, No 2 (2011) Vol 11, No 1 (2011) Vol 10, No 3 (2010) Vol 10, No 2 (2010) Vol 10, No 1 (2010) Vol 9, No 3 (2009) Vol 9, No 2 (2009) Vol 9, No 1 (2009) Vol 8, No 3 (2008) Vol 8, No 2 (2008) Vol 8, No 1 (2008) Vol 7, No 3 (2007) Vol 7, No 2 (2007) Vol 7, No 1 (2007) Vol 6, No 3 (2006) Vol 6, No 2 (2006) Vol 6, No 1 (2006) Vol 5, No 3 (2005) Vol 5, No 2 (2005) Vol 5, No 1 (2005) Vol 4, No 3 (2004) Vol 4, No 2 (2004) Vol 4, No 1 (2004) Vol 3, No 3 (2003) Vol 3, No 2 (2003) Vol 3, No 1 (2003) Vol 2, No 3 (2002) Vol 2, No 2 (2002) Vol 2, No 1 (2002) Vol 1, No 3 (2001) Vol 1, No 2 (2001) Vol 1, No 1 (2001) ARTICLE IN PRESS Article in press More Issue