cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Indonesian Journal of Chemistry
ISSN : 14119420     EISSN : 24601578     DOI : -
Indonesian Journal of Chemistry is an International, peer-reviewed, open access journal that publishes original research articles, review articles, as well as short communication in all areas of chemistry including applied chemistry. The journal is accredited by The Ministry of Research, Technology and Higher Education (RISTEKDIKTI) No : 21/E/KPT/2018 (in First Rank) and indexed in Scopus since 2012. Since 2018 (Volume 18), Indonesian Journal of Chemistry publish four issues (numbers) annually (February, May, August and November).
Arjuna Subject : -
Articles 1,981 Documents
Optimization Method for Bioethanol Production from Giant Cassava (Manihot esculenta var. Gajah) Originated from East Kalimantan Krishna Purnawan Candra; Kasma Kasma; Ismail Ismail; Marwati Marwati; Wiwit Murdianto; Yuliani Yuliani
Indonesian Journal of Chemistry Vol 19, No 1 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (179.596 KB) | DOI: 10.22146/ijc.31141

Abstract

Here is the first report of bioethanol production from giant cassava, a variety of cassava originated from East Kalimantan. Hydrolysis on freshly grated cassava with two different acids was studied separately. The experiment was conducted as a single factor experiment in Completely Randomized Design (CRD) with five treatments (0.0–1.0 M of acid solution), each replicated three times. Reducing sugars, unhydrolyzed substance (fibers), and hydrolysate clarity was determined. The experiment was continued by studying fermentation condition using factorial experiment (2 x 4) in CRD. The first factor was starter concentration (Saccharomyces cerevisiae, 5 and 10%) and the second factor was fermentation time (2–11 days). Biomass and alcohol content in fermentate were determined. The data were analyzed by ANOVA, excluding alcohol content that analyzed by the non-parametric statistic. Optimization using regression analysis showed that hydrolysis by HCl was more effective than H2SO4. Hydrolysis solution of 0.58 M HCl gave an optimum reducing sugar in hydrolysate (5.6%), which equivalent to a yield of 28.18%. Starter concentration affected significantly on biomass and alcohol content (p < 0.001) of fermentate, while fermentation time affected significantly only on alcohol content (p < 0.001). Optimum condition of cassava hydrolysate fermentation (100 mL) was using 5% yeast for 8 days, which gave a yield of 14.17% bioethanol.
Evaluation of Air Pollution Tolerance Index and Anticipated Performance Index of Selected Plant Species Winifred Uduak Anake; Jacinta Eigbefoh Eimanehi; Conrad Asotie Omonhinmin
Indonesian Journal of Chemistry Vol 19, No 1 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (148.093 KB) | DOI: 10.22146/ijc.35270

Abstract

This study reports a combination of two indices, air pollution tolerance index (APTI) and anticipated performance index (API) as viable tools for selecting suitable plants for pollution abatement program. Leaf samples of 6 plant species; Mangifera indica, Araucaria heterophylla, Elaeis guineensis, Syzygium malaccense, Acacia auriculiformis, and Chrysophyllum albidium were collected from an industrial and academic areas at Ado-Odo, Ota, Nigeria; during the dry season of January to March 2018. Biochemical parameters; leaf-pH, relative leaf water content, total chlorophyll content, and ascorbic acid content were analyzed to compute the APTI values. Combined APTI, botanical and socioeconomic indices were graded to evaluate the API of the different plant species. The APTI for the species ranged between 4.79 and 10.7, ideal for sensitive species category (APTI < 11), and the plants are classified as bio indicators of air pollution. The API indicates Mangifera indica and Syzygium malaccense (API = 4) as good performers while Chrysophyllum albidum is a moderate performer (API = 3). The three tree species were identified as suitable green belt plants and thus valuable additions to the green belt development plant list in tropical Africa.
Functionalization of Cellulose through Polyurethanization by the Addition of Polyethylene Glycol and Diisocyanate Imam Prabowo; Ghiska Ramahdita; Mochamad Chalid
Indonesian Journal of Chemistry Vol 19, No 1 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (16290.85 KB) | DOI: 10.22146/ijc.28550

Abstract

Plastic consumption becomes a main factor of land pollution due to poor degradability. To reduce the impact of land pollution, a biodegradable material such as cellulose, which has biodegradability, high strength, and specific modulus, is combined with plastic materials. However, the combination result poor compatibility because of different properties. Through grafting technique, the compatibility can be improved. The experimental results were conducted using Fourier-Transform Infrared (FT-IR), Simultaneous Thermal Analysis (STA), Scanning Electron Microscope (SEM) and 1H-Nuclear Magnetic Resonance (1H-NMR). The results revealed that the structure of hybrid material consists of cellulose as a chain extender in a hard segment which connects two diisocyanate compounds and polyol as a soft segment. The addition of 2.5 g of cellulose and 5 mole of diisocyanate can increase the melting temperature (Tm) of the hard segment from 417.92 to 460.72 °C and from 417.92 to 467.04 °C respectively. However, its melting temperatures of soft segment decrease from 378.53 to 350.74 °C and from 378.53 to 350.74 °C as well as the glass transition temperature (Tg) of the soft segment from 73.7 to 57.2 °C and from 73.7 to 71.8 °C. This study also discovers that cellulose and diisocyanate can raise thermal stability and create good interfacial bonding.
Adsorption of Methylene Blue on the Composite Sorbent Based on Bentonite-Like Clay and Hydroxyapatite Alexandr Ivanovich Vezentsev; Dang Minh Thuy; Lidia Fedotovna Goldovskaya-Peristaya; Nadezhda Alexandrovna Glukhareva
Indonesian Journal of Chemistry Vol 18, No 4 (2018)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (17.79 KB) | DOI: 10.22146/ijc.37050

Abstract

The adsorption of methylene blue from model aqueous solutions on bentonite-like clay, hydroxyapatite, and a composite sorbent has been investigated. The kinetic and thermodynamic parameters of adsorption in the temperature range 298–333 К have been calculated. The process is found to obey Langmuir isotherm equation. It is spontaneous but slightly endothermic. The maximal sorption capacity of the composite sorbent toward methylene blue is 175.4 mg/g at 25 °С that is 1.3 times more than that for bentonite-like clay and 17.8 times more than that for hydroxyapatite. Kinetics of the process is due to the combination of external and internal diffusion and can be described better by the model of pseudo-second order reaction.
Separation of Pb(II) Ion with Tetraacetic Acid Derivative of Calix[4]arene by Using Droplet-based Microreactor System Yehezkiel Steven Kurniawan; Mizuki Ryu; Ramachandra Rao Sathuluri; Wataru Iwasaki; Shintaro Morisada; Hidetaka Kawakita; Keisuke Ohto; Masatoshi Maeki; Masaya Miyazaki; Jumina Jumina
Indonesian Journal of Chemistry Vol 19, No 2 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (207.762 KB) | DOI: 10.22146/ijc.34387

Abstract

In this study, the microreactor system was investigated and compared with the batch-wise system as rapid and effective extractive Pb(II) separation over Fe(III), Cu(II) and Zn(II) with tetraacetic acid calix[4]arene. By using a microreactor system, the Pb(II) extraction percentages reached the maximum of 73, 89 and 100% in 8 sec residence time at equilibrium pH of 2.00, 2.25 and 2.50, respectively. The stripping percentage was 92% at 8 sec residence time by using a microreactor system with 2.0 M HNO3 as a stripping reagent. Complete separation of Pb(II) over Fe(III), Cu(II) and Zn(II) ions with the tetraacetic acid calix[4]arene in a competitive metal system was achieved at pH 2.00. However, the batch system required 24 h to reach the equilibrium for both extraction and stripping processes. The results suggested that the microreactor system enhanced the Pb(II) extraction and stripping rate up to 104 times faster than the batch-wise system.
Microwave Assisted Cationic Polymerization of Different Type Palm Oils with Boron Trifluoride Ethereal Catalyst Muhamad Farid; Bambang Soegijono; Zainal Alim Mas’ud
Indonesian Journal of Chemistry Vol 19, No 1 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (504.296 KB) | DOI: 10.22146/ijc.26680

Abstract

Indonesia is a major producer of palm oils. However, more than 76% of the production is exported as crude palm oil (CPO) with low economic values. Chemical conversion is necessary to produce more valuable derivatives of renewable biobased material including a thermoplastic polymer. In this study, crude palm oils (CPO), refined-bleached deodorized palm oil (RBDPO) and refined bleached deodorized palm oil olein (RBDPOO) were converted under microwave-assisted cationic polymerization with the boron trifluoride ethereal catalyst. The precursors were irradiated using the commercial microwave with various reaction conditions. The raw material compositions, iodine values, and functional groups of the raw material and polymers were analyzed by gas chromatography, titrimetry, and Fourier Transform infrared spectrophotometry, respectively. The differential scanning calorimetric (DSC) was used to observe the thermal characteristics of the polymers. The iodine value of the resulting polymer products was lower than the raw materials which indicated the decrease of the C=C bonds due to the polymerization. This result is supported by the decreased intensity of alkene bands in the infrared spectra of the product. The DSC thermogram curve proved that the product is a thermoplastic polymer with a melting point ranged from 40.3 to 45.2 °C; and the freezing point of 22.5 to 28.1 °C. In conclusion, palm oil-based thermoplastic polymer was successfully synthesized and characterized, and the best result was achieved when using RBDPOO as starting material.
Integrating Treatment of Neutralization with Sulfidic Natural Water (SNW) to Capture Dissolved Copper (Cu2+) from Acid Mine Drainage (AMD) at Batu Hijau Site, Sumbawa Island Indonesia Surya Hadi; Ni Made Sri Suliartini; Lely Kurniawati; Surayyal Hizmi
Indonesian Journal of Chemistry Vol 18, No 4 (2018)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (492.156 KB) | DOI: 10.22146/ijc.28223

Abstract

The overall objectives of the research were (1) to study the capability of sodium hydrosulfide (NaHS) and sulfidic natural water (SNW) of Sebau in recovery of Cu2+, (2) to investigate the potency of integrating treatments of neutralization with sulfidization using SNW of Sebau in removing Cu2+ from acid mine drainage (AMD) collected from Batu Hijau site. The first objective was achieved by separately reacting (in situ) NaHS and SNW with a Cu2+ solution at pH 5.5. The second objective was answered by conducting treatments of lime-neutralization by the use of three levels of pH (4.0; 5.5; 7.0) and sulfidization using SNW collected from Sebau, Lombok Island at three sampling points. The result showed that NaHS (61.6 mg/L) could precipitate Cu2+ solution (44.45 mg/L) up to 71.3%, while SNW of Sebau could precipitate Cu2+ solution (44.45 mg/L) for almost 100% at pH 5.5. The results also revealed that SNW could precipitate the remained Cu2+ in the AMD from the neutralization treatment (pH 4 = 113.5 mg/L; pH 5.5 = 85.01 mg/L; and pH 7.0 = 2.372 mg/L) to 83.84% (pH = 4.0) and 100% (pH = 5.5 and 7.0). Although both pH 5.5 and 7.0 could completely precipitate Cu2+ in the AMD, by comparing the experimental result with the stoichiometric analysis, it was predicted that pH 5.5 was an optimum pH level for the reaction between AMD and SNW to recover Cu2+ in the AMD. Without neutralization treatment, SNW showed potentiality to recover Cu2+ since the combination treatments of neutralization at pH 4 with SNW collected from three sample points resulted in a high percent recovery of Cu2+.
Hierarchical MnOx/ZSM-5 as Heterogeneous Catalysts in Conversion of Delignified Rice Husk to Levulinic Acid Yuni Krisyuningsih Krisnandi; Dita Arifa Nurani; Anastasia Agnes; Ralentri Pertiwi; Noer Fadlina Antra; Alika Rizki Anggraeni; Anya Prilla Azaria; Russell Francis Howe
Indonesian Journal of Chemistry Vol 19, No 1 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (447.718 KB) | DOI: 10.22146/ijc.28332

Abstract

Hierarchical ZSM-5 zeolite was synthesized using a double template method using TPAOH and PDDA as templates, while microporous ZSM-5 was also prepared using only TPAOH as a template. The syntheses then were followed by impregnation with Mn(II) c.a. 2 wt.% and calcination at 550 °C to obtain MnOx/ZSM-5 zeolite catalysts. Extensive characterization of the zeolite catalysts was performed using XRD, SEM, AAS, EDX, FTIR and BET measurement. The characterization showed that hierarchical or mainly mesoporous ZSM-5 was successfully synthesized, having added features compared to the microporous counterpart. The catalysts then were used in conversion reaction of delignified rice husk to levulinic acid, a platform chemical. As a comparison, a certain amount of MnCl2.4H2O was used as a homogeneous catalyst in a similar reaction. The product of the reaction was separated and analyzed with HPLC. It showed that 8 h was the optimum condition for the conversion, with hierarchical MnOx/hi_ZSM-5 catalyst gave the highest amount of levulinic acid (%Y of 15.83%), followed by microporous MnOx/mi_ZSM-5 (%Y of 10%). The % yield of levulinic acid using homogeneous Mn(II) catalyst (%Y of 8.86%) gave more charcoal as a product. Meanwhile, the stability of the zeolite catalysts after the reaction has also been investigated, mainly by analyzing the FTIR spectra and EDX data of the used catalysts after separated and calcined at 550 °C. From the analysis, some of the silica and alumina are leached from the framework, as well as the manganese oxide due to acidic condition at the beginning of the reaction. Nevertheless, it can be concluded that the conversion took place as the interaction between the cellulose and either MnOx in zeolites or Mn2+ ions in the solution, with the support of porous ZSM-5 framework. Hierarchical system somehow assists the ZSM-5 structure stays intact.
Preparation of Cassava Bagasse Starch-Based Biodegradable Film Reinforced with Chicken Feet Gelatin, Citric Acid as Crosslinker, and Glycerol as Plasticizer Silviana Silviana; Piontek Benedictus Brandon; Bella Ayu Silawanda
Indonesian Journal of Chemistry Vol 18, No 4 (2018)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.26766

Abstract

Chicken feet is one of sources used to produce biodegradable films due to inexpensive and abundant source. Chicken feet contains extracted gelatin amount of 27.61 to 33%. This biofilm was prepared from cassava bagasse starch with citric acid as cross-linker and glycerol as plasticizer. Cassava bagasse contains about 40–64% of starch. This paper observes the optimum composition of cassava bagasse starch-based biofilm preparation upon Central Composite Design with variables of gelatin, glycerol, and citric acid concentration with response of tensile strength and elongation at break. This research was executed in several steps, i.e. extraction of gelatin, extraction of cassava bagasse starch, and casting. Optimum condition of this biofilm preparation can be obtained at 12.98% w of gelatin content, 0.22% w of glycerol and 0.27% w of citric acid by releasing 21.73 MPa of tensile strength and 19.73% of elongation at break. Mass loss of biofilm with lower gelatin content gave almost the same mass loss for blank biofilm (cassava bagasse starch-based without gelatin content). Increasing of gelatin content in the biofilm, increasing of the biofilm mass loss. However, the biofilm had good thermal stability by thermal gravimetric analysis with higher temperature to obtain inorganic residue than that of blank biofilm.
Synthesis of Gold Nanoparticles Capped-Benzoic Acid Derivative Compounds (o-, m-, and p-Hydroxybenzoic Acid) Agustina Sus Andreani; Eko Sri Kunarti; Sri Juari Santosa
Indonesian Journal of Chemistry Vol 19, No 2 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (542.914 KB) | DOI: 10.22146/ijc.34440

Abstract

The effect of a hydroxyl functional group of the benzoic acid derivative compound, i.e. o-hydroxybenzoic acid, m-hydroxybenzoic acid, and p-hydroxybenzoic acid on the synthesis of AuNPs has been studied. It was revealed that the pH, heating time, the concentration of capping agent and the concentration of Au3+ affected the formation of AuNPs. We discovered that o-hydroxybenzoic acid possessed the highest stability, yet it needed the highest concentration of Au3+ and faster reaction time than p-hydroxybenzoic acid and slower than m-hydroxybenzoic acid. The stability was verified by means of UV-Vis spectrophotometer, XRD, TEM, Particle Size Analyzer (PSA), and Zeta Potential with an aging time of more than 5 months. We concluded that o-hydroxybenzoic acid acquired the most effective redox reaction instead of m-hydroxybenzoic acid and p-hydroxybenzoic acid, resulted in the smaller sized and unaggregated AuNPs. We also confirmed that the hydroxyl group of o-hydroxybenzoic acid, m-hydroxybenzoic acid and p-hydroxybenzoic acid is the functional group responsible for the reduction of Au3+ to Au0.

Page 84 of 199 | Total Record : 1981


Filter by Year

2001 2026


Filter By Issues
All Issue Vol 26, No 1 (2026) Vol 25, No 5 (2025) Vol 25, No 4 (2025) Vol 25, No 3 (2025) Vol 25, No 2 (2025) Vol 25, No 1 (2025) Vol 24, No 6 (2024) Vol 24, No 5 (2024) Vol 24, No 4 (2024) Vol 24, No 3 (2024) Vol 24, No 2 (2024) Vol 24, No 1 (2024) Vol 23, No 6 (2023) Vol 23, No 5 (2023) Vol 23, No 4 (2023) Vol 23, No 3 (2023) Vol 23, No 2 (2023) Vol 23, No 1 (2023) Vol 22, No 6 (2022) Vol 22, No 5 (2022) Vol 22, No 4 (2022) Vol 22, No 3 (2022) Vol 22, No 1 (2022) Vol 22, No 2 (2022) Vol 21, No 6 (2021) Vol 21, No 5 (2021) Vol 21, No 4 (2021) Vol 21, No 3 (2021) Vol 21, No 2 (2021) Vol 21, No 1 (2021) Vol 20, No 6 (2020) Vol 20, No 5 (2020) Vol 20, No 4 (2020) Vol 20, No 3 (2020) Vol 20, No 2 (2020) Vol 20, No 1 (2020) Vol 19, No 4 (2019) Vol 19, No 3 (2019) Vol 19, No 2 (2019) Vol 19, No 1 (2019) Vol 18, No 4 (2018) Vol 18, No 3 (2018) Vol 18, No 2 (2018) Vol 18, No 1 (2018) Vol 17, No 3 (2017) Vol 17, No 2 (2017) Vol 17, No 1 (2017) Vol 16, No 3 (2016) Vol 16, No 2 (2016) Vol 16, No 1 (2016) Vol 15, No 3 (2015) Vol 15, No 2 (2015) Vol 15, No 1 (2015) Vol 14, No 3 (2014) Vol 14, No 2 (2014) Vol 14, No 1 (2014) Vol 13, No 3 (2013) Vol 13, No 2 (2013) Vol 13, No 1 (2013) Vol 12, No 3 (2012) Vol 12, No 2 (2012) Vol 12, No 1 (2012) Vol 11, No 3 (2011) Vol 11, No 2 (2011) Vol 11, No 1 (2011) Vol 10, No 3 (2010) Vol 10, No 2 (2010) Vol 10, No 1 (2010) Vol 9, No 3 (2009) Vol 9, No 2 (2009) Vol 9, No 1 (2009) Vol 8, No 3 (2008) Vol 8, No 2 (2008) Vol 8, No 1 (2008) Vol 7, No 3 (2007) Vol 7, No 2 (2007) Vol 7, No 1 (2007) Vol 6, No 3 (2006) Vol 6, No 2 (2006) Vol 6, No 1 (2006) Vol 5, No 3 (2005) Vol 5, No 2 (2005) Vol 5, No 1 (2005) Vol 4, No 3 (2004) Vol 4, No 2 (2004) Vol 4, No 1 (2004) Vol 3, No 3 (2003) Vol 3, No 2 (2003) Vol 3, No 1 (2003) Vol 2, No 3 (2002) Vol 2, No 2 (2002) Vol 2, No 1 (2002) Vol 1, No 3 (2001) Vol 1, No 2 (2001) Vol 1, No 1 (2001) Article in press ARTICLE IN PRESS More Issue