Limits: Journal of Mathematics and Its Applications
Limits: Journal of Mathematics and Its Applications merupakan jurnal yang diterbitkan oleh Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia. Limits menerima makalah hasil riset di semua bidang Matematika, terutama bidang Analisis, Aljabar, Pemodelan Matematika, Sistem dan Kontrol, Matematika Diskrit dan Kombinatorik, Statistik dan Stokastik, Matematika Terapan, Optimasi, dan Ilmu Komputasi. Jurnal ini juga menerima makalah tentang survey literatur yang menstimulasi riset di bidang-bidang tersebut di atas.
Articles
267 Documents
Aljabar Maxplus dan Aplikasinya : Model Sistem Antrian
Subiono, Subiono
Limits: Journal of Mathematics and Its Applications Vol 6, No 1 (2009)
Publisher : Institut Teknologi Sepuluh Nopember
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (144.358 KB)
|
DOI: 10.12962/j1829605X.v6i1.1431
Dalam paper ini dibahas pengertian dari aljabar ma-xplus dan beberapa sifat-sifatnya serta diberikan suatu contoh aplikasi dari aljabar maxplus. Selanjutnya dibahas suatu model sistem antrian satu server dalam aljabar maxplus.
ANALISIS EKSISTENSI TRAVELING WAVE FRONT PADA MODEL MATEMATIKA REASSORTMENT VIRUS INFLUENSA H5N1 DAN H1N1-p
Hariyanto, Hariyanto;
Sanjaya, Suharmadi;
Hartatiati, Sri Suprapti
Limits: Journal of Mathematics and Its Applications Vol 13, No 2 (2016)
Publisher : Institut Teknologi Sepuluh Nopember
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (540.449 KB)
|
DOI: 10.12962/j1829605X.v13i2.1935
Reassortment dari virus influensa adalah transmisi dari lebih dari satu virus pada satu species yang dapat terjadi pada satu maupun beberapa lokasi , transmisi virus dapat terjadi karena kontak individual pada masing-masing lokasi atau pada lokasi silang. Jika penyebaran virus pada multilokasi terjadi pada multi species dan multi strain maka analisa traveling wave front dapat dilakukan berdasarkan pada model sistem persamaan differensial parsial-integral. Pada makalah ini merupakan hasil penelitian dengan mengembangkan model penyebaran virus pada 2 lokasi dengan setiap lokasi mempunyai potensi untuk terjadinya reassortment virus influensa H5N1 dengan H1N1-p , pergerakan individual secara lokal maupun global sangat mempengaruhi konstruksi model penyebaran virus yang dibangun, oleh karena itu analisa terhadap eksistensi traveling wave front dalam rangka untuk mengetahui potensi terjadinya penyebaran secara luas.
Minimum-Energy Control of Two-Link Manipulator withPure State Constraints
Subchan, Subchan
Limits: Journal of Mathematics and Its Applications Vol 2, No 1 (2005)
Publisher : Institut Teknologi Sepuluh Nopember
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (98.344 KB)
|
DOI: 10.12962/j1829605X.v2i1.1360
This paper presents an analysis and numerical solutions of the minimum-energy control of two-link robot manipulator. The minimum-energy control point-to-point trajectory is investigated subject to control constraints and state constraints on the angular velocities. The numerical solutions are solved by transforming the original problem into a nonlinear programming problem. The mathematical analysis of the optimal control problems is done based on the numerical results using an indirect method. The necessary conditions can be stated as a multi-point boundary value problems.
CATATAN TENTANG PERSAMAAN LYAPUNOV DAN PERSAMAAN ALJABAR RICCATI
Subiono, Subiono
Limits: Journal of Mathematics and Its Applications Vol 4, No 2 (2007)
Publisher : Institut Teknologi Sepuluh Nopember
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (230.802 KB)
|
DOI: 10.12962/j1829605X.v4i2.1415
Dalam paper ini dibahas dua bentuk persamaan yang hampir mi-rip yaitu persamaan Lyapunov dan persamaan aljabar Riccati. Selanjutnya diberikan beberapa catatan dari kedua persamaan tersebut yang masing-masing erat kaitannya dengan masalah kontrol optimal âLinier Quadratic Regulatorâ (LQR) sistem linier loop-buka dan sistem linier loop-tutup.
TRANSFORMASI MP-WAVELET TIPE B DAN APLIKASINYA PADA PEMAMPATAN CITRA
Fahim, Kistosil;
Yunus, Mahmud;
Suharmadi, S
Limits: Journal of Mathematics and Its Applications Vol 13, No 1 (2016)
Publisher : Institut Teknologi Sepuluh Nopember
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (890.079 KB)
|
DOI: 10.12962/j1829605X.v13i1.1779
Sekarang ini banyak dikembangkan metode penyelesaian masalah secara komputasi. Pada penelitian ini dikonstruksi suatu transformasi wavelet menggunakan operator dalam aljabar max-plus yang disebut sebagai MP-Wavelet. Hasil konstruksi ini secara komputasi membutuhkan waktu yang lebih cepat daripada transformasi wavelet pada umumnya. Pada konstruksi ini dihasilkan satu tipe MP-Wavelet yang disebut dengan MP-Wavelet tipe B. MP-Wavelet tipa ini merupakan pengembangan dari penelitian Fahim yang dipublikasikan pada âSeminar Nasional Pendidikan Sains Tahun 2014â dan âKonferensi Nasional Matemtika 17â. Tipe B ini digunakan untuk pemampatan citra. Untuk melihat hasil rekonstruksi pada proses pemampatan citra âLenaâ. Dari simulasi pemampatan ini didapatkan bahwa MP-Wavelet tipe B ini menghasilkan rekonstruksi citra yang lebih baik daripada tipe I yang dikonstruksi oleh Nobuhara (2010); dan tipe I serta tipe A Fahim (2014).
Perbandingan Metode Kalman Filter, Extended Kalman Filter, dan Ensemble Kalman Filter pada Model penyebaran virus HIV/AIDS
Agus N.A. Syarifuddin;
Dian A Merdekawati;
Erna Apriliani
Limits: Journal of Mathematics and Its Applications Vol 15, No 1 (2018)
Publisher : Institut Teknologi Sepuluh Nopember
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (1223.114 KB)
|
DOI: 10.12962/limits.v15i1.3344
Pada paper ini akan dibahas mengenai perbandingan metode estimasi antara Kalman Filter, Extended Kalman Filter dan Ensembel Kalman Filter untuk mengestimasi tingkat penyebaran virus HIV/AIDS pada Gay. Digunakan persamaan dan pada persamaan untuk mengetahui tingkat penyebaran virus HIV pada orang yang rentan normal, rentan gay, terinfeksi normal, terinfeksi gay, dan populasi AIDS-nya. Dari beberapa simulasi yang dilakukan, dapat didapatkan hasil bahwa Metode Extended Kalman Filter jauh lebih baik dibandingkan dengan kedua metode lainnya.
Pendekatan Regresi Spline Untuk Memprediksi Model Hubungan Temperatur Dengan Produksi Pythalic Anhydride Dalam Proses Reaksi Oksidasi
Asiyah, Nur
Limits: Journal of Mathematics and Its Applications Vol 1, No 1 (2004)
Publisher : Institut Teknologi Sepuluh Nopember
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (335.706 KB)
|
DOI: 10.12962/j1829605X.v1i1.1349
Pemodelan Regresi apabila ada asumsi bahwa bentuk fungsional dan sebaran tertentu telah diketahui dikategorikan sebagai regresi parametrik, apabila tidak ada informasi atau tidak ada asumsi-asumsi dengan model sehingga dibiarkan mengikuti perilaku data maka dikelompokkan sebagai regresi nonparametrik.Kebutuhan aplikasi yang komplek dengan pemodelan non linier dan kemampuan kom- putasi salah satunya adalah pendekatan analisis data melalui melalui pemodelan non- parametrik yang mana menghasilkan pendekatan analisis yang mengkaji sruktur data tersem- bunyi lebih menyeluruh dan mereduksi bias pada pemodelan parametrik. Regresi Spline dapat digunakan untuk memperoleh solusi yang optimum dari pemodelan nonparametrik. Melalui pendekatan spline ini, diaplikasikan pada proses Oksidasi, yaitu menentukan pola hubungan temperatur dan produk Phytalic Anhydride dengan katalis Vanadium Pentoksida.
The Application of The Steepest Gradient Descent for Control Design of Dubins Car for Tracking a Desired Path
Miswanto, Miswanto;
Pranoto, I.;
Muhammad, H;
Mahayana, D
Limits: Journal of Mathematics and Its Applications Vol 4, No 1 (2007)
Publisher : Institut Teknologi Sepuluh Nopember
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (227.887 KB)
|
DOI: 10.12962/j1829605X.v4i1.1404
In this paper, we consider the control design of the Dubins car system to track a desired path. We design the control of the Dubins car system using optimal control approach. The control of the Dubins car system is designed for tracking the desired path. Instead of the usual quadratic cost function, a special type of cost functional which includes a tracking error term will be considered. By this special cost functional, the minimum tracking error of path of the Dubins car toward a desired path using Pontryagin Maximum Principle is obtained. The analytical solution of the Hamiltonian system is di±cult to obtain. So, a numerical solution with the steepest gradient descent method is proposed. The numerical results are given at the last section of this paper.
CRITICAL SET OF EDGE MAGIC TOTAL LABELING OF EXPANDING CYCLE GRAPH *
Imron, Chairul;
Wahyudi, Suhud
Limits: Journal of Mathematics and Its Applications Vol 7, No 2 (2010)
Publisher : Institut Teknologi Sepuluh Nopember
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (336.749 KB)
|
DOI: 10.12962/j1829605X.v7i2.1436
This paper discusses about graph labeling. We will nd edge magic total labeling of cycle and expanding cycle graph. In the nal, we investigate the critical set of edge magic total labeling on cycleand expanding cycle graph.
PENGGUNAAN PENYELESAIAN PERSAMAAN ALJABAR RICCATI WAKTU DISKRIT PADA KENDALI OPTIMAL LINIER KUADRATIK
Yuanita, Dita Marsa;
Soleha, Soleha
Limits: Journal of Mathematics and Its Applications Vol 12, No 1 (2015)
Publisher : Institut Teknologi Sepuluh Nopember
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (698.197 KB)
|
DOI: 10.12962/limits.v12i1.2295
Permasalahan kendali optimal linier kuadratik adalah mendapatkan aturan kendali optimal ð(ð) dengan mendapatkan penyelesaian Persamaan Aljabar Riccati Waktu Diskrit (PRAWD) ð·(ð) yang definit positif dan matriks gain umpan balik ð²(ð). Untuk proses kendali berhingga, matriks-matriks ð·(ð) dan ð²(ð) adalah varian waktu. Akan tetapi, jika proses tersebut tidak berhingga maka matriks tersebut menjadi matriks konstan ð· dan ð². Untuk mendapatkan penyelesaian kendali optimal steady state, diperlukan suatu penyelesaian PRAWD steady state. Penyelesaian PRAWD steady state didapat dengan membalik waktu dari PRAWD non steady state. Pendiskritan juga diperlukan untuk menyelesaikan kendali optimal waktu diskrit apabila diberikan sistem waktu kontinu dengan indeks performansi kontinu, contoh kasus adalah sistem servo dengan plant pendulum terbalik. Analisis pada PRAWD menunjukkan sifat invariant dari PRAWD jika matriks pemberat indeks performansi diganti. Perlu diketahui juga bahwa PRAWD memiliki penyelesaian minimum yang unik.