Articles
300 Documents
ANALISIS VARIABILITAS CURAH HUJAN WILAYAH INDONESIA BERDASARKAN PENGAMATAN TAHUN 1975-2004
Juaeni, Ina
MATEMATIKA Vol 9, No 2 (2006): JURNAL MATEMATIKA
Publisher : MATEMATIKA
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (248.396 KB)
Tropical rainfall is the most important atmospheric variable, because it can be affect directly to human life. Tropical rainfall is also important for global climate and weather. The annual total of tropical rainfall differs from year to year and from place to place. Other characteristics, such as its seasonal and diurnal distribution, intensity, and duration also demonstrate spatial and temporal variations. Results of the statistical analysis to rainfall data indicate that rainfall variation coefficients in the southern Indonesia are higher than its in the northern Indonesia . Â
PENURUNAN PERSAMAAN GELOMBANG SOLITON DENGAN DERET FOURIER ORDE DUA SECARA NUMERIK
sarwadi, sarwadi
MATEMATIKA Vol 6, No 3 (2003): Jurnal Matematika
Publisher : MATEMATIKA
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (59.054 KB)
Salah satu solusi dari persamaan Korteweg - de Vries (KdV) adalah gelombang soliton. KdV merupakan persamaan umum gelombang yang solusinya tidak selalu bisa diturunkan secara exact. Penelitian ini mengkaji teknik numerik untuk menurunkan persamaan gelombang soliton dari persamaan KdV. Dengan MAPLE dibuat algoritma yang didasarkan pada minimisasi hamiltonian persamaan KdV atas suatu gelombang yang didekati dengan deret Fourier orde dua. Secara iteratif gelombang ini diperbaiki dengan menerapkan metode Steepest Descent dan kombinasi Euler - Aitken. Hasil menunjukkan bahwa pendekatan deret Fourier orde dua cukup bagus dan teknik numeriknya valid (dibuktikan dengan paket WAVEPACT) Â
BILANGAN DOMINASI DAN BILANGAN KEBEBASAN GRAF BIPARTIT KUBIK
Santoso, Budi;
Djuwandi, Djuwandi;
S.U, Robertus Heri
MATEMATIKA Vol 15, No 1 (2012): JURNAL MATEMATIKA
Publisher : MATEMATIKA
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (4203.252 KB)
Let a graph , is a pair of sets V vertices and set E edges. Let  be a subset of . If each vertex of  is adjacent to atleast one vertex of , then  is called a dominating set in . The domination number of a graph  denoted as  is the minimum cardinality of a dominating set in . A set of vertices in a graph is said to be an independent set if no two vertices in the set are adjacent. the number of vertices in the largest independent set of a graph  is called the independence number and denoted by . In this final project, we consider the relation between independent set and dominating set of finite simple graphs. In particular, discuss them for some cubic bipartite graphs and find that the domination number is less than  of the number of vertices and independence number  is half of the number of vertices. Â
ON SOLUTIONS OF THE DISCRETE-TIME ALGEBRAIC RICCATI EQUATION
Soleha, Soleha
MATEMATIKA Vol 13, No 2 (2010): JURNAL MATEMATIKA
Publisher : MATEMATIKA
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (72.18 KB)
. On solving the optimal control for the linear discrete-time system based on quadratic performance indexes will be obtained the hermitian solutions of discrete-time algebraic Riccati equation. The existence of that solution can be identified by an invariant subspace which has certain properties. In this paper we investigate some properties of discrete-time algebraic Riccati equation related to an invariant subspace as steps to identify them.
HIMPUNAN BILANGAN BULAT NON NEGATIF PADA SEMIRING LOKAL DAN SEMIRING FAKTOR
Fatimah, Meryta Febrilian;
Puspita, Nikken Prima;
., Farikhin
MATEMATIKA Vol 17, No 1 (2014): Jurnal Matematika
Publisher : MATEMATIKA
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (54.769 KB)
Let commutative Semiring S. Ideal on Semiring S defined in the same way with the Ideal on the ring. On Semiring  there are special Ideals such as -ideal, -maximal Ideal and -ideal. Semiringwith a unique -maximal Ideal is called local Semiring. In This paper we will discussed that from non negative integer  we can determined a local Semiring and quotient Semiring.
A NUMERICAL SOLUTION OF SURFACE WAVE IN POROUS MEDIA
Wiryanto, L.H
MATEMATIKA Vol 12, No 1 (2009): JURNAL MATEMATIKA
Publisher : MATEMATIKA
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (686.14 KB)
A model of wave propagation in porous medium is derived, based on the pressure, giving a diffusive-like equation. The model is then solved numerically by a finite difference method. Taylor approximation is applied to the nonlinear term to obtain a diagonal dominant matrix corresponding to the finite difference equations, so that Gauss-Seidel iteration can used to solve the system of equations. As the result, over-damped wave is performed in this paper, related to quality of the medium. Â
AKAR-AKAR POLINOMIAL SEPARABEL SEBAGAI PEMBENTUK PERLUASAN NORMAL
Daruni, Sulastri;
Surarso, Bayu;
Irawanto, Bambang
MATEMATIKA Vol 7, No 3 (2004): JURNAL MATEMATIKA
Publisher : MATEMATIKA
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (36.611 KB)
Misalnya F adalah lapangan perluasan dari lapangan K dan f(x) adalah polinomial tidak tereduksi dalam K maka f(x) dapat difaktorkan sebagai hasil kali dari faktor linear dalam lapangan pemisahnya . Jika akar-akar dari polinomial tersebut tidak ada yang ganda maka polinomial tersebut merupakan polinomial separabel. Selanjutnya untuk Lapangan pemisah yang memuat kesemua akar-akar yang berlainan dari polinomial tak tereduksi f(x) maka lapangan pemisah tersebut merupakan perluasan normal.
SOLUSI PERSAMAAN DIOPHANTINE DENGAN IDENTITAS BILANGAN FIBONACCI DAN BILANGAN LUCAS
puspitasari, Ayu;
Sumanto, YD;
Widowati, Widowati
MATEMATIKA Vol 20, No 1 (2017): JURNAL MATEMATIKA
Publisher : MATEMATIKA
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (868.752 KB)
In this paper we propose diophantine equations with the form  and . These equations has integer solutions which can form Fibonacci numbers and Lucas numbers. Integer solutions of the Diophantine equations in the form of Fibonacci number and Lucas number are determined by using recursive formula, Binet’s Formula, and the most important is identity of Fibonacci numbers and Lucas numbers.
MODEL SPLINE DENGAN ERROR BERKORELASI
Nalim, Nalim;
Budiantara, I Nyoman
MATEMATIKA Vol 8, No 3 (2005): JURNAL MATEMATIKA
Publisher : MATEMATIKA
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (111.739 KB)
Spline smoothing is a popular method for estimating the function in nonparametric regression model. Its performance depends greatly on the choice of smoothing parameters. Many methods of selecting smoothing parameters such as GCV, GML and UBR are developed under the assumption of independent observations. They fail badly when data are correlated. In nonparametric regression, correlated error could be solved by finding weighted estimator and determine the correlation matrix from the error. Estimation of nonparametric function is obtained by minimizing the penalized weighted least-square (PWLS). In this paper, the extension of the GML method to estimate the smoothing parameters and correlation simulataneously is presented. Simulation was conducted to evaluate and to compare the performance of the original GML and the extended GML method. The extended GML is recommended since it works well in all simulation scheme. This method is also able to illustrate the data concentration data in a continous chemical process
MENCERMATI BERBAGAI JENIS PERMASALAHAN DALAM PROGRAM LINIER KABUR
Asikin, Mohammad
MATEMATIKA Vol 6, No 2 (2003): Jurnal Matematika
Publisher : MATEMATIKA
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (65.729 KB)
Konsep baru tentang himpunan yang dapat dipandang sebagai perluasan dari himpunan klasik/tegas adalah himpunan kabur. Perluasan ini membawa pengaruh pula pada beberapa konsep lain seperti relasi kabur, bilangan kabur, logika kabur serta program linier kabur. Dalam program linier kabur dikenal pengklasifikasian: program linier dengan sumber kabur, program linier dengan sasaran kabur serta program linier dengan kendala kabur.Â