cover
Contact Name
Andy Sapta
Contact Email
sapta@royal.ac.id
Phone
-
Journal Mail Official
lppm_stmik@royal.ac.id
Editorial Address
-
Location
Kab. asahan,
Sumatera utara
INDONESIA
JURTEKSI
Published by STMIK Royal Kisaran
ISSN : 24071811     EISSN : 25500201     DOI : -
Core Subject : Science,
JURTEKSI (Jurnal Teknologi dan Sistem Informasi) is a scientific journal which is published by STMIK Royal Kisaran. This journal published twice a year on December and June. This journal contains a collection of research in information technology and computer system.
Arjuna Subject : -
Articles 685 Documents
WEBGIS-BASED GEOGRAPHICAL INFORMATION SYSTEM FOR MAPPING BAKERY SHOPS IN KISARAN CITY Apridonal M, Yori; Mardalius; Bela Astuti
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 11 No. 4 (2025): September 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i4.4176

Abstract

Abstract: Bakery MSMEs in Kisaran City play a significant role in the local economy, but their distribution data is still managed manually, making it difficult to access and analyze. This study aims to develop a WebGIS-based Geographic Information System to map and manage bakery MSME data digitally and in an integrated manner. The research methods include field surveys, spatial and non-spatial data collection, system design using UML, development with Leaflet.js and MySQL, and testing using the blackbox method. The results show that the resulting system is capable of displaying interactive maps with location details, business information, and an easy-to-use search feature. This system makes it easier for the government, business actors, and the public to access MSME information and supports data-based economic development planning. With the output in the form of publications in accredited journals, this research is expected to be an effective solution for MSME data management in other regions. Keyword: bakery; mapping; MSME; WebGIS Abstrak: UMKM toko roti di Kota Kisaran memiliki peran penting dalam perekonomian lokal, namun data persebarannya masih dikelola secara manual sehingga sulit diakses dan dianalisis. Penelitian ini bertujuan mengembangkan Sistem Informasi Geografis berbasis WebGIS untuk memetakan dan mengelola data UMKM toko roti secara digital dan terintegrasi. Metode penelitian meliputi survei lapangan, pengumpulan data spasial dan non-spasial, perancangan sistem menggunakan UML, pengembangan dengan Leaflet.js dan MySQL, serta pengujian menggunakan metode blackbox. Hasil penelitian menunjukkan sistem yang dihasilkan mampu menampilkan peta interaktif dengan detail lokasi, informasi usaha, dan fitur pencarian yang mudah digunakan. Sistem ini mempermudah pemerintah, pelaku usaha, dan masyarakat dalam mengakses informasi UMKM, serta mendukung perencanaan pembangunan ekonomi berbasis data. Dengan luaran berupa publikasi pada jurnal terakreditasi, penelitian ini diharapkan menjadi solusi efektif untuk pengelolaan data UMKM di daerah lain. Kata kunci; pemetaan; toko roti; UMKM; WebGIS
DEVELOPMENT INTEGRATIVE MODEL FOR ACADEMIC INFORMATION SYSTEMS USING UTAUT, DELONE&MCLEAN, AND TTF Asep Hilmi Mutakin; Asep Suhana; Permatasari, R. Willa; Arief Budiman Krama; Andrew Ghea Mahardika
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 11 No. 4 (2025): September 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i4.4153

Abstract

Abstract: The Academic Information System (SIAKAD) plays an important role in supporting the management of academic administration in higher education institutions, particularly for students. ABC University has implemented SIAKAD since 2018 to facilitate administrative ativities in line with its motto of a high technology campus. This study aims to measure the sucess of SIAKAD usage from the aspects of acceptance, satisfaction, suitability, and perceived benefits. The integration of the Unified Theory of Acceptance and Use of Technology (UTAUT), DeLone & McLean, and Task Technology Fit (TTF) models was carried out to obain a more comprehensive overview in assessing the success of SIAKAD. UTAUT explains the factors influencing the intention to use, DeLone & McLean emphasizes the relationship between system quality and both user satisfaction and net benefits, while TTF evaluates the fit between technology and user tasks. By combining these three models, the study addresses the limitations of each model and produces a more holistic approach in measuring acceptance, success, and the appropriateness of system use. The testing was conducted using SPSS and Structural Equation Modeling (SEM) analysis through AMOS. Keywords: siakad; utaut; delone&mclean; penerimaan teknologi; sem
DEVELOPMENT OF A QR CODE-BASED WEBAR TO DIGITIZE LOCAL WISDOM AS AN EFFORT TO INCREASE TOURIST ATTRACTION IN BORDER AREAS P, Noviyanti; Mira; Alexander Jerry
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 11 No. 4 (2025): September 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i4.4181

Abstract

Abstract: Current technological developments play a crucial role in driving the tourism industry, one of which is the utilization of technology. However, tourist attractions in border areas face challenges such as limited access to digital information and a lack of interactive media to present local wisdom such as history, customs, and culture. This study aims to develop and implement a QR Code-based Web-based Augmented Reality (WebAR) to digitize local wisdom at tourist attractions, making information more engaging and accessible to tourists. The research methodology adopted three approaches: UCD (User-Centered Design), Agile methods, and TAM (Technology Acceptance Model). This platform contains the local wisdom of two tourist villages in the border area, namely Sebujit Village and Jagoi Babang Village. The results of testing and evaluation using multiple linear regression and SEM-PLS methods on 45 respondents showed that the WebAR technology acceptance model was significant (F = 6.583; p < 0.001). User Attitude (ATU) is a key variable that significantly influences Intention to Use (BI) (β=0.429; p=0.001), while Ease of Use (PEOU) and Benefit (PU) indirectly influence BI through ATU. As additional validation, the classification test yielded an accuracy of 88.90% and an F1-score of 0.941, confirming that QR Code-based WebAR is effective and well-received as a digital information and promotion medium for local wisdom in border areas. Keywords: border areas; local wisdom; qr code; tourist attractions; web augmented reality. Abstrak: Perkembangan teknologi saat ini memiliki peran penting dalam mendorong industri pariwisata, salah satunya dengan pemanfaatan teknologi. Namun, objek wisata di daerah perbatasan menghadapi tantangan seperti keterbatasan akses informasi digital dan kurangnya media interaktif untuk menyajikan kearifan lokal seperti sejarah, adat istiadat, dan budaya. Penelitian ini bertujuan untuk mengembangkan dan mengimplementasikan Web-based Augmented Reality (WebAR) berbasis QR Code untuk digitalisasi kearifan lokal objek wisata, menjadikan informasi lebih menarik dan mudah diakses bagi wisatawan. Metodologi penelitian mengadopsi tiga pendekatan, UCD (User-Centered Design), metode Agile, dan TAM (Technology Acceptance Model). Platform ini memuat kearifan lokal dua desa wisata di daerah perbatasan, yaitu Desa Sebujit dan Desa Jagoi Babang. Hasil pengujian dan evaluasi dengan metode regresi linier berganda dan SEM-PLS pada 45 responden menunjukkan bahwa model penerimaan teknologi WebAR ini signifikan (F = 6.583; p < 0.001). Sikap Pengguna (ATU) menjadi variabel kunci yang berpengaruh signifikan terhadap Niat Penggunaan (BI) (β=0.429; p=0.001), sementara Kemudahan Penggunaan (PEOU) dan Manfaat (PU) memengaruhi BI secara tidak langsung melalui ATU. Sebagai validasi tambahan, uji klasifikasi menghasilkan akurasi 88,90% dan F1-score 0,941, yang menegaskan bahwa WebAR berbasis Kode QR efektif dan dapat diterima dengan baik sebagai media informasi dan promosi digital kearifan lokal di wilayah perbatasan. Kata Kunci: daerah perbatasan; kearifan lokal; qr code; web augmented reality.
COMPARATIVE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR COSMETIC SALES PREDICTION ON TOKOPEDIA Sahira, Mutia; Tania, Ken Ditha; Afrina, Mira
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 11 No. 4 (2025): September 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i4.4187

Abstract

Abstract: The rapid growth of the cosmetics industry on e-commerce platforms has intensified competition, creating a critical need for effective, data-driven marketing strategies. This study aims to conduct a comparative analysis of machine learning algorithms to predict the sales categories (High, Medium, Low) of cosmetic products on the Tokopedia marketplace. Four classification models; Random Forest, XGBoost, Logistic Regression, and Naive Bayes were trained and evaluated on data collected via web scraping. The methodology incorporates the Synthetic Minority Over-sampling Technique (SMOTE) to address significant class imbalance and GridSearchCV for hyperparameter optimization to ensure a fair and robust comparison. The experimental results conclusively show that the Random Forest model achieved the best performance, yielding the highest F1-Score Macro Average of 0.75 and an accuracy of 85.3%. The superior model was subsequently implemented in a simple recommendation system to simulate optimal discount strategies, demonstrating its practical utility in providing actionable insights for business decisions. Keywords: classification; comparative analysis; machine learning; sales prediction; SMOTE Abstrak: Pertumbuhan pesat industri kosmetik pada platform e-commerce telah membuat persaingan ketat, sehingga menciptakan kebutuhan krusial akan strategi pemasaran yang efektif dan berbasis data. Penelitian ini bertujuan untuk melakukan analisis komparatif terhadap algoritma machine learning untuk memprediksi kategori penjualan (Tinggi, Sedang, Rendah) produk kosmetik di marketplace Tokopedia. Empat model klasifikasi, yaitu Random Forest, XGBoost, Regresi Logistik, dan Naive Bayes, dilatih dan dievaluasi menggunakan data yang dikumpulkan melalui web scraping. Metodologi penelitian ini menerapkan Synthetic Minority Over-sampling Technique (SMOTE) untuk mengatasi ketidakseimbangan kelas yang signifikan dan GridSearchCV untuk optimisasi hyperparameter guna memastikan perbandingan yang adil. Hasil eksperimen menunjukkan bahwa model Random Forest mencapai performa terbaik, dengan menghasilkan F1-Score Macro Average tertinggi sebesar 0,75 dan akurasi 85,3%. Model unggul ini kemudian diimplementasikan dalam sebuah sistem rekomendasi sederhana untuk menyimulasikan strategi diskon yang optimal, yang menunjukkan kegunaan praktisnya dalam memberikan wawasan yang dapat ditindaklanjuti untuk pengambilan keputusan bisnis. Kata kunci: analisis komparatif; klasifikasi; machine learning; prediksi penjualan; SMOTE
PROTOTYPE OF RICE FIELD IRRIGATION SYSTEM USING ARDUINO UNO MICROCONTROLLER AND TELEGRAM Maulana, Kevin; Ritzkal; Hendri Hendrawan, Ade
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 11 No. 4 (2025): September 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i4.4068

Abstract

Abstract: In agriculture, irrigation systems are vital for enhancing water management and maximising plant growth. Effective irrigation management involves distributing sufficient quantities of water evenly to condition soil fertility for plants. This study aims to design a prototype that can be monitored via the Telegram app. The research methodology employs a thinking framework approach. The system is implemented using an Arduino Uno microcontroller and supporting devices, including an ESP8266 Wi-Fi module, an ultrasonic sensor, a soil moisture sensor, a stepper motor and a servo motor. Telegram serves as the monitoring tool, sending notifications connected to the Arduino via a Wi-Fi network. Test results showed that the system operates effectively: the HC-SR04 ultrasonic sensor functions as a water level reader, and the stepper motor opens and closes the water gate. Soil moisture monitoring uses a soil moisture sensor to measure the water content in the soil. If the sensor detects dry soil conditions or a moisture level below 60%, the servo motor will rotate 15° to close the water channel. Conversely, if the sensor detects wet or moist soil conditions, the servo motor will rotate 0° to close the water channel. Keywords: arduino uno; irrigation system; soil moisture; ultrasonic sensor;
IMPLEMENTATION OF THE AHP METHOD TO DETERMINE PRIORITIES IN PUBLIC COMPLAINT HANDLING Dewi Yuliansari, Intan; Elfianty, Lena; Ninosari, Devina
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 11 No. 4 (2025): September 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i4.4130

Abstract

Abstract: The Ombudsman of the Republic of Indonesia is an institution tasked with supervising the administration of public services and handling community complaint reports related to allegations of maladministration. The purpose of this research is to create a decision support system using the Analytic Hierarchy Process (AHP) method, which facilitates the determination of priority handling of community complaint reports at the Ombudsman of the Republic of Indonesia Bengkulu Representation. This decision support system is built on a web-based platform using PHP programming language with a MySQL database that can be accessed offline by the admin of the Ombudsman. With the existence of this priority recommendation, it is expected that work will become more effective and efficient, as resources can be focused on reports that most need attention. Based on the test data used, which consists of 12 Community Complaint Reports from July 2024, it was found that the priority handling recommendations for community complaint reports were derived from 3 reports with the highest final AHP values. The recommended priority handling reports are registration number 0021/LM/VII/2024/BKL with a final AHP value of 2.074, registration number 0020/LM/VII/2024/BKL with a final AHP value of 1.964, and registration number 0018/LM/VII/2024/BKL with a final AHP value of 1.866. Keywords: decision support system; priority recommendation; public complaint report; AHP Method (analytic hierarchy process method)
COMPARISON OF K-MEANS AND K-MEDOIDS FOR DRUG DATA CLUSTERING Andika, Tripa; Kurniabudi; Sharipuddin
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 11 No. 4 (2025): September 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i4.4140

Abstract

Abstract: Ineffective drug demand management can lead to problems such as imbalanced drug distribution, excess stock, or shortages in community health centers. To address this, data mining can be utilized to support the planning and control process of drug inventory. Clustering techniques were chosen because they are able to group drug data based on certain characteristics, thus identifying stable and unstable drug supply patterns. This study aims to group drug data at Simpang Kawat Community Health Center in Jambi City, which can be used as a reference in planning drug needs in the next period. Data grouping is divided into three categories: slow-moving, medium-moving, and fast-moving. The research data includes attributes of drug name, initial stock, receipt, inventory, usage, and final stock, with a total of 1758 data sets, which were processed using the CRISP-DM framework through the RapidMiner application. Cluster quality evaluation was carried out using the Davies-Bouldin Index (DBI). The results showed that the K-Means algorithm obtained a DBI value of 0.175, smaller than K-Medoids which obtained a value of 0.354. Because a smaller DBI value indicates better cluster quality, K-Means provides more optimal clustering results than K-Medoids. Through these clustering results, community health centers can utilize drug cluster information to support more efficient drug procurement planning, as well as reduce the risk of excess or shortage of stock. Keywords: data mining; clustering; k-means; k-medoids; davies-bouldin index
PREDICTION OF STROKE USING LOGISTIC REGRESSION WITH A MACHINE LEARNING APPROACH Rana Aphrodita, Ishiqa; Nur Fajri, Ika; Nugroho, Agung
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 11 No. 4 (2025): September 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i4.4161

Abstract

Abstract: Stroke is one of the leading causes of death and disability in various parts of the world, including in Indonesia. Along with the development of digital technology, the use of Machine Learning in the health sector is growing, one of which is in an effort to predict the occurrence of stroke. This study aims to implement the Logistic Regression algorithm in predicting the likelihood of a person having a stroke based on data from the Brain Stroke dataset. The research process includes data preprocessing (missing value handling, normalization, and label encoding), dividing the data into 80% training data and 20% test data, as well as model training. The model was then evaluated using several measures such as accuracy, precision, recall, F1-score, and ROC-AUC, as well as a confusion matrix. The results of the study showed that Logistic Regression was able to provide stroke classification results with an accuracy of 82.4%, precision of 80.1%, recall of 78.6%, F1-score of 79.3%, and a ROC-AUC value of 0.87. Then, the model is integrated into applications that use Streamlit, so it can be used interactively to predict stroke risk in new data. The results of this study show that the combination of Machine Learning and web-based applications has the potential to support efforts to detect early stroke risk. Keywords: logistic regression; machine learning; prediction; streamlit; stroke. Abstrak: Stroke adalah salah satu penyebab utama kematian dan kecacatan di berbagai belahan dunia, termasuk di Indonesia. Seiring perkembangan teknologi digital, penggunaan Machine Learning dalam bidang kesehatan semakin berkembang, salah satunya dalam upaya memprediksi terjadinya penyakit stroke. Penelitian ini bertujuan untuk mengimplementasikan algoritma Logistic Regression dalam memprediksi kemungkinan seseorang mengalami stroke berdasarkan data dari dataset Brain Stroke. Proses penelitian meliputi preprocessing data (penanganan missing value, normalisasi, dan label encoding), membagi data menjadi 80% data latih dan 20% data uji, serta pelatihan model. Model kemudian dievaluasi menggunakan beberapa ukuran seperti akurasi, precision, recall, F1-score, dan ROC-AUC, serta confusion matrix. Hasil penelitian menunjukkan bahwa Logistic Regression mampu memberikan hasil klasifikasi penyakit stroke dengan akurasi sebesar 82,4%, precision 80,1%, recall 78,6%, F1-score 79,3%, dan nilai ROC-AUC sebesar 0,87. Kemudian, model tersebut diintegrasikan ke dalam aplikasi yang menggunakan Streamlit, sehingga dapat digunakan secara interaktif untuk memprediksi risiko stroke pada data baru. Hasil penelitian ini menunjukkan bahwa kombinasi Machine Learning dan aplikasi berbasis web berpotensi mendukung upaya deteksi dini risiko stroke. Kata kunci: logistic regression; machine learning; prediksi; streamlit; stroke.
DATABASE OPTIMIZATION FOR THE ROYAL MENGAJAR APPLICATION SUPPORTING CROWDSOURCED ACADEMIC CONTENT Iqbal, Muhammad; Junaidi
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 11 No. 4 (2025): September 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i4.4165

Abstract

Abstract: The development of digital learning systems requires not only effective content delivery but also database consistency and performance, particularly when used at scale by lecturers and students. Weaknesses in database design can lead to data duplication, relational violations, and transaction failures that compromise system reliability. This study designed the Royal Mengajar application using PHP and MySQL, supported by JavaScript, HTML, and Bootstrap 5. The Crowdsourced Academic Content model enables lecturers to contribute learning materials openly, while students evaluate them through a user rating system. The objective of this research is to design and optimize the database architecture of the Royal Mengajar application by implementing multiple control mechanisms—namely views, triggers, transactions, and constraints—to enhance data efficiency, consistency, and integrity in digital learning environments. Database optimization focuses on the use of views to improve query efficiency, triggers to maintain automatic consistency, transactions to ensure atomicity in multi-table operations, and constraints to preserve data integrity. The results show that views reduced the average query execution time to 0.12 seconds, triggers maintained consistency without manual intervention, and constraints achieved 100% referential integrity. The application of these mechanisms significantly improved system speed, reduced data redundancy, and enhanced information reliability, thus reinforcing the sustainability of Royal Mengajar as a community-driven learning platform Keywords: crowdsourced academic content; constraint; database optimization; trigger. Abstrak: Pengembangan sistem pembelajaran digital tidak hanya menuntut penyajian materi, tetapi juga konsistensi serta kinerja basis data ketika sistem digunakan secara masif oleh dosen dan mahasiswa. Kelemahan rancangan database dapat menimbulkan duplikasi data, pelanggaran relasi, dan kegagalan transaksi yang memengaruhi keandalan sistem. Penelitian ini merancang aplikasi Royal Mengajar berbasis PHP dan MySQL dengan dukungan JavaScript, HTML, dan Bootstrap 5. Model Crowdsourced Academic Content memungkinkan dosen berkontribusi secara terbuka, sedangkan mahasiswa melakukan evaluasi melalui user rating system. Tujuan penelitian ini adalah untuk merancang dan mengoptimalkan basis data aplikasi Royal Mengajar melalui penerapan berbagai mekanisme pengendali, seperti view, trigger, transaction, dan constraint, guna meningkatkan efisiensi, konsistensi, dan integritas data dalam sistem pembelajaran digital. Optimalisasi database difokuskan pada penerapan view untuk efisiensi query, trigger untuk menjaga konsistensi otomatis, transaction untuk memastikan atomicity pada operasi multi-tabel, serta constraint guna menjamin integritas data. Hasil pengujian menunjukkan view menurunkan rata-rata waktu eksekusi query menjadi 0,12 detik, trigger menjaga konsistensi tanpa intervensi manual, dan constraint memastikan integritas referensial tercapai 100%. Penerapan mekanisme ini berdampak pada peningkatan kecepatan sistem, berkurangnya redundansi, serta keandalan informasi yang lebih tinggi, sehingga mendukung keberlanjutan Royal Mengajar sebagai platform pembelajaran berbasis kontribusi komunitas. Kata kunci: basis data; optimasi; trigger; constraint; crowdsourced academic content.
USE OF TASK-CENTERED SYSTEM DESIGN IN THE INTERFACE DESIGN OF THE POPULATION DEMOGRAPHIC DATA INFORMATION SYSTEM Muhammad Azmi Zaky; Allsela Meiriza; Dinda Lestarini; Pacu Putra; Nabila Rizki Oktadini
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 11 No. 4 (2025): September 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i4.4186

Abstract

Abstract: The rapid development of information and communication technology has prompted the government to provide digital-based services, including in the management of demographic data. This study aims to apply the Task-Centered System Design (TCSD) method in designing the Muara Enim Regency Demographic Data Information System. The TCSD method was chosen to ensure that the prototype design process was systematic and focused on user needs and tasks. The research stages included identification, user-centered needs analysis, scenario-based design, and walkthrough evaluation. The designed prototype supports several main tasks, including viewing demographic statistics, searching for specific data, submitting data download requests, and contacting the admin. The evaluation was conducted through online usability testing using the Maze platform with the System Usability Scale (SUS) instrument involving 13 respondents. The evaluation results showed an average SUS score of 78.5, which falls into the “good” category. This confirms that the interface design has met usability standards, is user-friendly, and is capable of supporting user needs in accessing and managing demographic data. Thus, the application of the TCSD method has proven to be effective in producing an interface design that is focused on user tasks and can be the basis for further system development. Keywords: system usability scale; task centered system design; user interface