cover
Contact Name
Andy Sapta
Contact Email
sapta@royal.ac.id
Phone
-
Journal Mail Official
lppm_stmik@royal.ac.id
Editorial Address
-
Location
Kab. asahan,
Sumatera utara
INDONESIA
JURTEKSI
Published by STMIK Royal Kisaran
ISSN : 24071811     EISSN : 25500201     DOI : -
Core Subject : Science,
JURTEKSI (Jurnal Teknologi dan Sistem Informasi) is a scientific journal which is published by STMIK Royal Kisaran. This journal published twice a year on December and June. This journal contains a collection of research in information technology and computer system.
Arjuna Subject : -
Articles 685 Documents
APPLICATION EXPERT SYSTEM FOR DIAGNOSIS OF UTERINE DISEASE FUZZY LOGIC Titin, Tri Wanti; Yesputra, Rolly; Rohminatin, Rohminatin
JURTEKSI (Jurnal Teknologi dan Sistem Informasi) Vol 11, No 3 (2025): Juni 2025
Publisher : Universitas Royal

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i3.3803

Abstract

Abstract: Uterine disease is a serious threat to women's health, which can affect fertility and quality of life. Delayed diagnosis often results in patients not getting optimal early treatment at the H. Abdul Manan Simatupang Kisaran Regional General Hospital. This study aims to develop a fuzzy logic-based expert system to diagnose uterine disease based on the symptoms experienced by patients. This system receives symptom data as input, then performs analysis using the fuzzy logic method to determine the level of possibility of a disease. The final results produced are an initial diagnosis and treatment recommendations. System testing shows that this method is able to identify uterine disease with fairly good accuracy, where one case showed the possibility of Endometriosis with a confidence level of 63%. With this system, patients can obtain initial information about their health condition, so they can take more appropriate and faster medical steps.Keywords: expert system; fuzzy logic; uterine disease.  Abstrak: Penyakit rahim merupakan ancaman serius bagi kesehatan wanita, yang dapat berdampak pada kesuburan dan kualitas hidup. Keterlambatan diagnosis sering kali menyebabkan pasien tidak mendapatkan penanganan dini yang optimal di Rumah Sakit Umum Daerah H. Abdul Manan Simatupang Kisaran. Penelitian ini bertujuan untuk mengembangkan sistem pakar berbasis logika fuzzy guna mendiagnosis penyakit rahim berdasarkan gejala yang dialami pasien. Sistem ini menerima data gejala sebagai input, kemudian melakukan analisis menggunakan metode logika fuzzy untuk menentukan tingkat kemungkinan suatu penyakit. Hasil akhir yang dihasilkan berupa diagnosis awal dan rekomendasi penanganan. Pengujian sistem menunjukkan bahwa metode ini mampu mengidentifikasi penyakit rahim dengan akurasi yang cukup baik, di mana salah satu kasus menunjukkan kemungkinan penyakit Endometriosis dengan tingkat kepercayaan sebesar 63%. Dengan adanya sistem ini, pasien dapat memperoleh informasi awal mengenai kondisi kesehatannya, sehingga dapat mengambil langkah medis yang lebih tepat dan cepat.Kata kunci: fuzzy logic; penyakit rahim; sistem pakar.
THE EFFECT OF FACIAL ACCESSORY AUGMENTATION ON THE ACCURACY OF DEEP LEARNING-BASED FACIAL RECOGNITION SYSTEMS Hidayat, Ahmad Nur; Suciati, Nanik; Saikhu, Ahmad
JURTEKSI (Jurnal Teknologi dan Sistem Informasi) Vol 11, No 3 (2025): Juni 2025
Publisher : Universitas Royal

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i3.3846

Abstract

Abstract: Face recognition based on deep learning has become an important technology in many areas. However, these systems often face challenges in real-world conditions, such as when the face is partially covered by accessories such as masks or glasses. This study aims to evaluate the effect of data augmentation by adding facial accessories (masks, glasses, and a combination of both) and geometric augmentation on the accuracy of face recognition systems. There are three types of datasets used in this method: the original dataset (category 1), the dataset with facial accessories augmentation (category 2), and the dataset with geometric augmentation (category 3). Data augmentation was performed on the training dataset to increase diversity, followed by the face detection process using SCRFD and feature extraction with ArcFace. The model was then trained using Multi-Layer Perceptron (MLP). Based on the results, adding face accessories (category 2) made the model a lot more accurate, hitting 99% accuracy. In category 3, adding geometric features improved accuracy to 91%. Other evaluation metrics, such as precision, recall, and F1-score, also showed improvement after augmentation. This study concludes that facial accessories augmentation is more effective in improving the accuracy and robustness of face recognition models compared to geometric augmentation.Keywords: augmentation; deep learning; face recognition; glasses. Abstrak: Pengenalan wajah berbasis deep learning telah menjadi salah satu teknologi penting dalam berbagai aplikasi. Namun, sistem ini sering kali menghadapi tantangan dalam kondisi dunia nyata, seperti saat wajah tertutup sebagian oleh aksesori seperti masker atau kacamata. Penelitian ini bertujuan untuk mengevaluasi pengaruh augmentasi data dengan menambahkan aksesori wajah (masker, kacamata, dan kombinasi keduanya) serta augmentasi geometris terhadap akurasi sistem pengenalan wajah. Metode yang digunakan melibatkan tiga kategori dataset: dataset asli tanpa augmentasi (kategori 1), dataset dengan augmentasi aksesoris wajah (kategori 2), dan dataset dengan augmentasi geometris (kategori 3). Augmentasi data dilakukan pada dataset pelatihan untuk meningkatkan keberagaman, diikuti dengan proses deteksi wajah menggunakan SCRFD dan ekstraksi fitur dengan ArcFace. Model kemudian dilatih menggunakan Multi-Layer Perceptron (MLP). Hasil penelitian menunjukkan bahwa augmentasi aksesoris wajah (kategori 2) memberikan peningkatan signifikan pada akurasi model, mencapai 99%, sedangkan kategori 3 dengan augmentasi geometris mencapai akurasi 91%. Metrik evaluasi lainnya, seperti precision, recall, dan F1-score, juga menunjukkan peningkatan setelah augmentasi. Penelitian ini menyimpulkan bahwa augmentasi aksesoris wajah lebih efektif dalam meningkatkan akurasi dan ketahanan model pengenalan wajah dibandingkan dengan augmentasi geometris.Kata kunci: augmentasi; deep learning; kacamata; pengenalan wajah.
DEVELOPMENT OF A WEB-BASED POINT OF SALE APPLICATION US-ING THE LARAVEL FRAMEWORK Apriani, Rika; Haerani, Reni; Nugroho, Praditya Adi; Farisi, Imam
JURTEKSI (Jurnal Teknologi dan Sistem Informasi) Vol 11, No 3 (2025): Juni 2025
Publisher : Universitas Royal

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i3.3918

Abstract

The development of information technology encourages businesses to take over digital systems in business operations, even in the sales process. The Point of Sales (POS) system is the leading solution for recording transactions, managing stock, and creating sales reports efficiently. This study aims to develop a POS application based on a website and make it easier for administrators to manage sales transactions, making them faster and more efficient. This system is made with a structured Agile method, requirements, design, development, testing, deployment, and implementation, and the framework used is the Laravel framework. The test results show that the system is on track and that the efficiency of the transaction and reporting process can be increased. A web-based basis allows users to manage their business more easily in real time because this application is flexible and can be used on various devices.            Keywords: Point of Sales; Laravel; Agile Model;Websites
SENTIMENT ANALYSIS USING NAIVE BAYES ALGORITHM CASE STUDY ON AMAZON E-COMMERCE PRODUCT REVIEWS Rahman, Erik; Namora, Namora; Anas, Lukman
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 11 No. 3 (2025): Juni 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i3.3637

Abstract

Analisis sentimen adalah proses mengidentifikasi dan mengklasifikasikan opini dalam teks menjadi kategori tertentu seperti positif, negatif, atau netral. Penelitian ini bertujuan untuk menganalisis sentimen ulasan produk pada platform e-commerce menggunakan algoritma Naive Bayes. Dataset ulasan produk diambil dari Kaggle, terdiri dari ribuan ulasan dengan label sentimen. Metodologi mencakup tahap preprocessing teks, ekstraksi fitur menggunakan teknik TF-IDF, dan penerapan algoritma Naive Bayes untuk klasifikasi sentimen. Hasil penelitian menunjukkan bahwa algoritma Naive Bayes memberikan akurasi sebesar 94%, membuktikan kemampuannya dalam analisis sentimen dengan dataset teks pendek
ANALYSIS OF THE QUALITY OF "ONLINE EQUIVALENT" E-LEARNING USING WEBQUAL 4.0 AND IPA METHODS Rahman, Taufik; Azizah, Alfi
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 11 No. 4 (2025): September 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i4.3792

Abstract

Abstract: The use of e-learning in non-formal education is increasingly important to support the improvement of access to learning, one of which is through the online platform. This study aims to analyze the quality of online services using WebQual 4.0 and Im-portance Performance Analysis (IPA) methods to evaluate the suitability between user expectations and perceptions. The research method used a quantitative approach by distributing questionnaires to active users, then analyzed using the WebQual Index to measure the overall quality of the system as well as the IPA to determine improvement priorities. The results showed that the quality of SeTARA Online was relatively good with a WebQual Index value of 0.798. However, there is still a gap between user expectations and satisfaction with a negative gap value of -0.238. The IPA analysis identified indicators in Quadrant I as priority improvements, especially in the aspects of service interaction and information presentation. These findings underscore the need for continuous development of features and technical support to optimize the user experience. The conclusion of this study suggests that there should be improvements in priority indicators to increase user satisfaction, as well as strengthen the effectiveness of online learning. Advanced research can expand variables, compare with other platforms, and combine quantitative and qualitative analysis methods for more comprehensive results. Keywords: e-learning; importance performance analysis; quality of service; online equivalent; webqual 4.0
SIMULATION OF RUSUNAWA UHAMKA INTERNET NETWORK USING CISCO PACKET TRACER WITH PPDIOO METHOD Marpandi, Pajar; Hanif, Isa Faqihuddin
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 11 No. 3 (2025): Juni 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i3.3851

Abstract

Abstract: Computer networks are not just additional facilities in the campus environment, but computer networks help the overall academic activities and social relations of students. This research aims to overcome the problem of uneven wifi internet networks and less than optimal SSID management in UHAMKA flats, which has an impact on student access to information and communication. The method used is PPDIOO with simulation using Cisco Packet Tracer and the chosen star topology to provide a stable connection and easy network management. The results of the simulation show that all devices are well connected to each other, as indicated by the successful IP ping test between devices. The research concluded that the PPDIOO method was successful in designing an effective and structured internet network in the students' living environment. So that it can improve access to academic activities and good communication. Keywords: cisco packet tracer; computer networks; PPDIOO Abstrak: Jaringan komputer bukan hanya sekedar fasilitas tambahan dalam lingkungan kampus, tetapi jaringan komputer membantu keseluruan aktivitas akademik dan hubungan sosial mahasiswa. Penelitian ini bertujuan mengatasi permasalahan jaringan internet wifi yang belum merata dan pengelolaan SSID yang kurang optimal di rusunawa UHAMKA, sehingga berdampak pada akses informasi dan komunikasi mahasiswa. Metode yang digunakan adalah PPDIOO dengan simulasi menggunakan cisco packet tracer dan topologi star yang dipilih untuk memberikan koneksi stabil dan pengelolaan jaringan yang mudah. Hasil dari simulasi menunjukan seluruh perangkat saling terhubung dengan baik, ditandai dengan berhasilnya pengujian ping IP antar perangkat. Penelitian menyimpulkan metode PPDIOO berhasil dalam merancang jaringan internet yang efektif dan terstruktur di lingkungan tempat tinggal mahasiswa. Sehingga dapat meningkatkan akses aktivitas akademik dan komunikasi secara baik. Kata kunci: cisco packet tracer; jaringan komputer; PPDIOO
BATTERY LIFESPAN PREDICTION FOR MOTORCYCLES USING DOUBLE MOVING AVERAGE Syahputra, Heru; Jhonson Efendi Hutagalung; Suparmadi
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 11 No. 4 (2025): September 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i4.3889

Abstract

Abstract: The inability to accurately monitor the lifespan of motorcycle batteries can lead to sudden failures, disrupt user activities, and increase maintenance costs. This issue is exacerbated by the absence of a predictive system that can assist users and workshops in planning maintenance and managing battery inventory effectively. This study aims to develop a battery lifespan prediction model for motorcycles using the Double Moving Average (DMA) method. The model is built based on historical data from 12 motorcycle units, including usage frequency, duration, terrain conditions, and maintenance habits. Forecasting is conducted through two stages of moving averages followed by trend parameter calculations. Evaluation results show that the model has a high level of accuracy, with MAPE = 0.10, MAD = 1.68, and RMSE = 2.14, indicating very low prediction errors. In addition, DMA is also used to forecast product demand at PT Anugerah Karya Abiwara Kisaran to prevent stock shortages. The system is developed using Visual Studio 2010 and Microsoft Access and has proven effective in supporting maintenance planning and inventory control. With its high accuracy and efficiency, the results of this study provide tangible contributions to decision-making in battery maintenance and inventory management. Keywords: battery; DMA; motorcycle; prediction. Abstrak: Ketidakmampuan dalam memantau usia pakai aki sepeda motor secara akurat dapat menyebabkan kerusakan mendadak, mengganggu aktivitas pengguna, serta meningkatkan biaya perawatan. Permasalahan ini diperburuk oleh tidak tersedianya sistem prediktif yang membantu pengguna dan bengkel dalam merencanakan perawatan serta mengelola persediaan aki secara efisien. Penelitian ini bertujuan untuk mengembangkan model prediksi usia pemakaian aki sepeda motor dengan menggunakan metode Double Moving Average (DMA). Model dibangun berdasarkan data historis dari 12 unit sepeda motor yang mencakup frekuensi penggunaan, durasi, kondisi medan dan kebiasaan perawatan. Proses peramalan dilakukan melalui dua tahap perataan bergerak, yang kemudian diikuti dengan perhitungan parameter tren. Hasil evaluasi menunjukkan bahwa model ini memiliki tingkat akurasi yang tinggi, dengan nilai MAPE sebesar 0,10, MAD sebesar 1,68, dan RMSE sebesar 2,14, yang mengindikasikan tingkat kesalahan prediksi yang sangat rendah. Selain itu, metode DMA juga diterapkan untuk meramalkan permintaan produk pada PT Anugerah Karya Abiwara Kisaran guna mencegah terjadinya kekurangan stok. Sistem dikembangkan menggunakan Visual Studio 2010 dan Microsoft Access, serta terbukti efektif dalam mendukung perencanaan perawatan dan pengendalian persediaan. Dengan akurasi dan efisiensi yang tinggi, hasil penelitian ini memberikan kontribusi nyata dalam pengambilan keputusan terkait pemeliharaan aki dan manajemen inventori. Kata kunci: baterai; DMA; prediksi; sepeda motor.
DATA STRUCTURE MODELING IN THE BEST TEACHER RATING SYSTEM USING TOPSIS ALGORITHM Parini, Parini; Febby Madonna Yuma
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 11 No. 3 (2025): Juni 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i3.4019

Abstract

Abstract: Teacher performance appraisal is a very important aspect in improving the quality of education today, but often occurs during the assessment process of subjectivity constraints and lack of a structured system, in this study aims to build a data structure modeling and facilitate the school MAS Islamiyah Hessa Air Genting in the assessment to determine the best teacher transparently and measurably by using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) algorithm. The TOPSIS method was chosen because it is able to provide ranking results based on the closeness of alternatives to the ideal solution. In this modeling, assessment criteria data such as pedagogical, professional, personality, social competencies, as well as other indicators such as teacher discipline and achievement are modeled structurally in a relational database. The results show that the designed data structure is able to support the decision-making process efficiently and objectively. Keywords: data structure; decision support system; teacher assessment; topsis; ranking. Abstrak: Penilaian kinerja guru merupakan aspek yang sangat penting dalam peningkatan mutu pendidikan saat ini, namun sering terjadi saat proses penilaian kendala subjektivitas dan kurangnya sistem yang terstruktur, dalam penelitian ini bertujuan untuk membangun pemodelan struktur data serta mempermudah pihak sekolah MAS Islamiyah Hessa Air Genting dalam penilaian untuk menentukan guru terbaik secara transparan dan terukur dengan menggunakan algoritma Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). Metode TOPSIS dipilih karena mampu memberikan hasil perankingan berdasarkan kedekatan alternatif terhadap solusi ideal. Dalam pemodelan ini, data kriteria penilaian seperti kompetensi pedagogik, profesional, kepribadian, sosial, serta indikator lain seperti kedisiplinan dan prestasi guru dimodelkan secara terstruktur dalam basis data relasional. Hasil penelitian menunjukkan bahwa struktur data yang dirancang mampu mendukung proses pengambilan keputusan secara efisien dan objektif. Kata kunci: struktur data; topsis; penilaian guru; sistem pendukung keputusan; perangkingan
OPTIMIZATION OF SUPPORT VECTOR MACHINE WITH SMOTE AND BAYESIAN METHOD FOR HEART FAILURE CLASSIFICATION Doni Agung Prasetyo; Harminto Mulyo; Nadia Annisa Maori
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 11 No. 3 (2025): Juni 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i3.4057

Abstract

Abstract: This study applies an integrated approach to optimize heart failure classification. The main objective is to address the challenge of class imbalance in medical datasets and to improve the accuracy, sensitivity, and generalization of the classification model. The urgency of this issue is emphasized by statistics showing that cardiovascular diseases cause approximately 17.9 million deaths worldwide each year. Using a quantitative experimental approach, this study analyzes the "Heart Failure Prediction Dataset" from Kaggle, which consists of 918 records. The data were processed through normalization and encoding, followed by the application of SMOTE on the training set to balance class distribution. This step successfully increased model accuracy from 88.41% to 90.22% and minority class recall from 0.82 to 0.88. Furthermore, Bayesian Optimization was employed to refine the hyperparameters of SVM, resulting in a final model with an accuracy of 89.13% that demonstrated better generalization. This integrated approach significantly enhances the stability, sensitivity, and generalization of the model, making it a reliable tool for clinical decision support systems in predicting heart failure. Keywords: bayesian optimization; heart failure; machine learning; SMOTE; SVM. Abstrak: Penelitian ini menerapkan pendekatan terintegrasi untuk mengoptimalkan klasifikasi gagal jantung. Tujuan utama studi ini adalah untuk mengatasi tantangan ketidakseimbangan kelas dalam dataset medis dan meningkatkan akurasi, sensitivitas, serta generalisasi model klasifikasi. Urgensi ini ditegaskan oleh statistik yang menunjukkan bahwa penyakit kardiovaskular menyebabkan sekitar 17,9 juta kematian setiap tahun secara global. Menggunakan pendekatan eksperimental kuantitatif, penelitian ini menganalisis "Heart Failure Prediction Dataset" dari Kaggle, yang terdiri dari 918 catatan. Data diproses dengan normalisasi dan encoding, lalu SMOTE diterapkan pada data pelatihan untuk menyeimbangkan distribusi kelas. Langkah ini berhasil meningkatkan akurasi dari 88,41% menjadi 90,22% dan recall kelas minoritas dari 0,82 menjadi 0,88. Selanjutnya, Bayesian Optimization menyempurnakan hyperparameter SVM, menghasilkan model akhir dengan akurasi 89,13% yang menunjukkan generalisasi lebih baik. Pendekatan terintegrasi ini secara signifikan meningkatkan stabilitas, sensitivitas, dan generalisasi model. Hasil penelitian ini menjadikannya alat yang andal untuk sistem pendukung keputusan klinis dalam prediksi gagal jantung. Kata kunci: bayesian optimization; gagal jantung; machine learning; SMOTE; SVM
INTEGRATED AHP-TOPSIS DECISION SYSTEM FOR FAIR STUDENT PERFORMANCE EVALUATION Hafiz, Rahmad; Triyono, Gandung; Assegaf , Noval; Yasmin , Nadia; Effendi , Muhtar
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 11 No. 4 (2025): September 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i4.4064

Abstract

Giving awards is essential to motivate students; however, selecting outstanding students at the junior high school level is often conducted manually and subjectively, which can lead to unfairness and prolonged processing time. This study develops a Decision Support System (DSS) that integrates the Analytical Hierarchy Process (AHP) and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) to support objective and transparent student selection. A quantitative descriptive approach was employed, with data collected through questionnaires, interviews, and documentation at two state junior high schools in Banjarmasin City. Seven assessment criteria were applied: attendance, behavior, uniform neatness, extracurricular participation, academic grades, competition achievements, and disciplinary records. AHP was used to determine the weight of each criterion, while TOPSIS ranked students based on these weights. The web-based system was developed using PHP and MySQL and evaluated using the Technology Acceptance Model (TAM). Results show that academic grades had the highest weight (28.5%), followed by attendance (22.3%) and competition performance (15.2%). The TAM evaluation yielded average scores of 4.32 for Perceived Ease of Use, 4.40 for Perceived Usefulness, 4.15 for Attitudes Towards Use, and 4.28 for Behavioral Intention to Use. The DSS produces accurate rankings, is well-received by users, and offers an efficient, fair, and replicable solution for data-driven educational governance in the digital era.