cover
Contact Name
Tati Mardiana
Contact Email
jurnal.jri@kresnamediapublisher.com
Phone
-
Journal Mail Official
jurnal.jri@kresnamediapublisher.com
Editorial Address
-
Location
Kota banjar,
Jawa barat
INDONESIA
Jurnal Riset Informatika
Published by KresnaMedia Publisher
ISSN : 26561743     EISSN : 26561735     DOI : -
Core Subject : Science,
Jurnal Riset Informatika, merupakan Jurnal yang diterbitkan oleh Kresnamedia Publisher. Jurnal Riset Informatika, berawal diperuntukan menampung paper-paper ilmiah yang dibuat oleh peneliti dan dosen-dosen program studi Sistem Informasi dan Teknik Informatika.
Arjuna Subject : -
Articles 417 Documents
Covid-19 Social Aid Admission Selection Using Simple Additive Weighting Method as Decision Support Tyas Setiyorini; Frieyadie Frieyadie; Aditiya Yoga Pratama
Jurnal Riset Informatika Vol. 5 No. 3 (2023): June 2023
Publisher : Kresnamedia Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (826.739 KB) | DOI: 10.34288/jri.v5i3.231

Abstract

The process of receiving Covid-19 social assistance to residents who are recorded as social aid recipients in the RT.07 RW.10 Kp. Sukapura Jaya area is still uneven. The second problem is that there is no particular mathematical calculation to determine the value of the weight of the criteria, especially for residents who are recorded as receiving Covid-19 social aid in the RT.007 RW.10 Kp. Sukapura Jaya area. The gradual decline in social aid programs so that the number that falls does not match the data of social aid recipients. This caused a polemic for RT administrators in distributing social aid programs. The decline in social aid programs does not match the number of citizens recorded. It overcomes citizens who cause social jealousy—analyzing the problems experienced by the RT management in the distribution of Covid-19 social assistance, especially the RT.07 RW.10 Kp. Sukapura Jaya area to residents who are recorded as recipients. Selecting Covid-19 social assistance recipients, especially in the RT.07 RW.10 Kp. Sukapura Jaya area. So the application of methods as decision support is needed, and it is needed to help determine the weight of particular criteria for citizens who are recorded as more in need. This study proposes a decision support method using the Simple Additive Weighting (SAW) method, which is expected to help decision-making in solving problems for selecting Covid-19 social aid recipients in the RT.07 RW.10 Kp. Sukapura Jaya community. The purpose of the study is to select residents who are recorded to receive social aid who are more in need first will get Covid-19 social aid.
Implementation of the Saw Method to Discover the Optimum Internet Service Recommendations for Online Gaming Gunawan Gunawan; Ita Yulianti; Ami Rahmawati; Tati Mardiana; Nanang Ruhyana
Jurnal Riset Informatika Vol. 5 No. 3 (2023): June 2023
Publisher : Kresnamedia Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (759.546 KB) | DOI: 10.34288/jri.v5i3.232

Abstract

Currently, the development and use of the Internet have a more complex function so that it can change the paradigm of people's lives, including in aspects of entertainment, especially games. With the rise of numerous ISPs in Indonesia, different internet service packages are now available, particularly for gamers, such as Indihome, Biznet, First Media, and My Republic. The variety of services makes it difficult for users to choose an internet package that suits their needs. Therefore, this research aims to build a decision support system that can facilitate users in choosing the ideal internet service for gamers based on five criteria: quota, network speed, connection, cost, and the number of users using the SAW method. The data collection methods used are observation, questionnaires, and interviews. The research results obtained from data processing using the SAW method through Microsoft Excel are then implemented into a website-based program. With this program, it is hoped that it can be a tool for users in determining the service package to be purchased.
The Determination of Development Priorities Road Infrastructure at “Dinas Pekerjaaan Umum dan Penataan Ruang Kabupaten Balangan” Using AHP and Bayes Methods Haderiansyah Haderiansyah; Deni Mahdiana; Ade Davy Wiranata; Mirza Sutrisno
Jurnal Riset Informatika Vol. 5 No. 3 (2023): June 2023
Publisher : Kresnamedia Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (721.326 KB) | DOI: 10.34288/jri.v5i3.233

Abstract

The construction industry is a significant part of the gross domestic product of any country, and its success can lead to the long-term economic and social development of lives in general. Many studies have found a positive link between public infrastructure and the economy. Infrastructure investment directly affects economic growth. Well-designed infrastructure will have long-term financial benefits. The Ministry of Public Works and Housing (Pekerjaan Umum dan Perumahan Rakyat / PUPR) has played an essential role in strengthening the monitoring and evaluation of the implementation of infrastructure development by local authorities, including making the right policies in determining infrastructure development priorities. The Analytical Hierarchy Process (AHP) and Bayes method were used in this study. First, we used AHP to derive independent weights for criteria. Then, we determined the closeness between priorities to produce a sequence of infrastructure development priorities. Based on the results, using Analytical Hierarchy Process (AHP) and Bayes Method showed that Lampihong-Panaitan, Halong-Tabuan, and Bihara-Tariwin roads are Priorities for development. Then the Wangkili-Pudak road, and finally, the Awayan-Bihara. Decision support systems using the AHP and Bayes methods can determine priorities for road infrastructure development at the Office of Public Works and Public Housing in Balangan Regency.
A Study on Enhanced Spatial Clustering Using Ensemble Dbscan and Umap to Map Fire Zone in Greater Jakarta, Indonesia Silviya Hasana; Devi Fitrianah
Jurnal Riset Informatika Vol. 5 No. 3 (2023): June 2023
Publisher : Kresnamedia Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (724.615 KB) | DOI: 10.34288/jri.v5i3.234

Abstract

This research investigated ensemble clustering algorithms and dimensionality reduction for fire zone mapping, specifically DBSCAN + UMAP. We evaluated six clustering methods: DBSCAN, ensemble DBSCAN, DBSCAN + UMAP, ensemble DBSCAN + UMAP, HDBSCAN and Gaussian Mixture Model (GMM). We evaluated our results based on the Silhouette Score and the Davies-Bouldin (DB) index, emphasizing handling irregular cluster shapes, smaller clusters and resolving incompact clusters. Our findings suggested that ensemble DBSCAN + UMAP outperformed five other methods with zero noise clusters indicating clustering results are resistant to outliers, leading to a clearer identification of fire-prone areas, a high Silhouette Score of 0.971, indicating accurate cluster separation of distinct areas of potential fire hazards and an exceptionally low DB Index of 0.05 that indicates compact clusters to identify well-defined and geographically concentrated areas prone to fire hazards. Our findings contribute to the advanced techniques for minimizing the impacts of fires and improving fire hazard assessments in Indonesia.
Analysis of Indonesian Language Dataset for Tax Court Cases: Multiclass Classification of Court Verdicts Ade Putera Kemala; Hafizh Ash Shiddiqi
Jurnal Riset Informatika Vol. 5 No. 3 (2023): June 2023
Publisher : Kresnamedia Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (442.968 KB) | DOI: 10.34288/jri.v5i3.236

Abstract

Tax is an obligation that arises due to the existence of laws, creating a duty for citizens to contribute a certain portion of their income to the state. The Tax Court serves as a judicial authority for taxpayers seeking justice in tax disputes, handling various types of taxes on a daily basis. This paper presents an analysis of an Indonesian language dataset of tax court cases, aiming to perform multiclass classification to predict court verdicts. The dataset undergoes preprocessing steps, while data augmentation using oversampling and label weighting techniques address class imbalance. Two models, bi-LSTM and IndoBERT, are utilized for classification. The research produced a final result of model with 75.83% using IndoBERT model. The results demonstrate the efficacy of both models in predicting court verdicts. This research has implications for predicting court conclusions with limited case details, providing valuable insights for legal decision-making processes. The findings contribute to the field of legal data analysis, showcasing the potential of NLP techniques in understanding and predicting court outcomes, thus enhancing the efficiency of legal proceedings.
Clickbait Detection in Indonesia Headline News Using Indobert and Roberta Muhammad Edo Syahputra; Ade Putera Kemala; Dimas Ramdhan
Jurnal Riset Informatika Vol. 5 No. 3 (2023): June 2023
Publisher : Kresnamedia Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (930.209 KB) | DOI: 10.34288/jri.v5i4.237

Abstract

This paper explores clickbait detection using Transformer models, specifically IndoBERT and RoBERTa. The objective is to leverage the models specifically for clickbait detection accuracy by employing balancing and augmentation techniques on the dataset. The research demonstrates the benefit of balancing techniques in improving model performance. Additionally, data augmentation techniques also improved the performance of RoBERTa. However, it resulted differently for IndoBERT with slightly decreased performance. These findings underline the importance of considering model selection and dataset characteristics when applying augmentation. Based on the result, IndoBERT, with a balanced distribution, outperformed the previous study and the other models used in this research. This study used three dataset distribution settings: unbalanced, balanced, and augmented with 8513, 6632, and 15503 total data counts, respectively. Furthermore, by incorporating balancing and augmentation techniques, the research surpasses previous studies, contributing to the advancement of clickbait detection accuracy, contributing to the advancement of clickbait detection accuracy with 95% accuracy in f1-score with unbalanced distribution. However, the augmentation method in this study only improved the RoBERTa model. Moreover, performance might be boosted by gathering more varied datasets. This work highlights the value of leveraging pre-trained Transformer models and specific dataset-handling techniques. The implications include the necessity of dataset balancing for accurate detection and the varying impact of augmentation on different models. These insights aid researchers and practitioners in making informed decisions for clickbait detection tasks, benefiting content moderation, online user experience, and information reliability. The study emphasizes the significance of utilizing state-of-the-art models and tailored approaches to improve clickbait detection performance.
Classification of Blighted Ovum Factors in Pregnant Women Using PSO-Based Naïve Bayes Febryo Ponco Sulistyo; Endang Sri Palupi
Jurnal Riset Informatika Vol. 5 No. 3 (2023): June 2023
Publisher : Kresnamedia Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (611.491 KB) | DOI: 10.34288/jri.v5i3.238

Abstract

Classification of Blighted Ovum Factors or undeveloped fetuses is carried out considering that many cases occur in pregnant women. Blighted Ovum is 60% of the causes of miscarriage. In Indonesia, it is found in 37% of every 100 pregnancies. Classification uses Naïve Bayes based on Particle Swarm Optimization (PSO), which only requires small training data to determine the parameter estimates needed in the classification process, and the use of Particle Swarm Optimization can increase accuracy and solve optimization problems with the process of selecting variable data and attribute data to create a questionnaire as a data collection method. The results of the classification of blighted Ovum in pregnant women using the Naïve Bayes algorithm with the Rapid Miner framework obtained an accuracy value of 71.56% with an Area Under Curve (AUC) of 0.674 included in the excellent classification category. After using the PSO optimization, the accuracy value rose to 79.82% with an Area Under the Curve of 0.764, including a good classification category. Naïve Bayes is a suitable method for classification, and PSO can improve the accuracy and AUC values .
Sentiment Analysis of Telemedicine Applications on Twitter Using Lexicon-Based and Naive Bayes Classifier Methods Hasan, Arid; Ramadhan, Yudhi Raymond; Minarto, Minarto
Jurnal Riset Informatika Vol. 5 No. 4 (2023): September 2023
Publisher : Kresnamedia Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (751.857 KB) | DOI: 10.34288/jri.v5i4.244

Abstract

Since the onset of the COVID-19 pandemic in Indonesia, many people have turned to telemedicine programs as an alternative to minimize social interactions, opting for consultations from the safety of their homes using smartphones and internet connectivity. Given the necessity for physical distancing and avoiding crowded places, these applications have become indispensable substitutes for in-person medical consultations. Numerous apps facilitating access to healthcare services have been introduced in Indonesia, ranging from business startups to initiatives by the Ministry of Health. Telemedicine can potentially revolutionize healthcare in Indonesia, addressing critical health challenges. A significant issue within Indonesia's healthcare system is the scarcity of doctors and their uneven distribution. With only four doctors per 10,000 people, this figure falls far below the WHO guideline of 10 doctors per 1,000. Sentiment analysis of these applications was conducted to evaluate how telemedicine applications meet public needs and offer an alternative solution. Lexicon-based and naive Bayes methods were employed to classify tweet data into positive, neutral, and negative sentiments. The results revealed 908 positive tweets, 172 negative tweets, and 168 neutral tweets, indicating predominantly positive public perceptions of telemedicine applications. The naive Bayes classifier exhibited a 74% accuracy rate, with a precision of 98% and a recall of 86%. These findings underscore the positive impact and acceptance of telemedicine applications among the Indonesian populace, emphasizing their significance in augmenting the nation's healthcare landscape.
Naive Bayes and Decision Tree Algorithms for BRI Life Sharia Insurance Product Classification Rika Astuti
Jurnal Riset Informatika Vol. 5 No. 4 (2023): September 2023
Publisher : Kresnamedia Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (622.697 KB) | DOI: 10.34288/jri.v5i4.246

Abstract

Law 12 of 2012 mandates that the government increase access to higher education for high achievers and underprivileged people. One of the efforts to realize this is by providing KIP Lectures. To ensure that beneficiaries are eligible for KIP scholarships, it is necessary to classify scholarship recipients correctly using data mining classification techniques. The classification technique chosen is k-Nearest Neighbor (K-NN). K-NN is a classification method that relies heavily on the k parameter in carrying out classification. K-NN was applied to the KIP Scholarship applicant dataset at UIN Malang in 2022. The test scenario in this research is to compare the k-odd and k-even parameters to find the most optimal k value in K-NN. The highest accuracy value obtained by k-odd is 0.71 or 71% when k=9, and the highest for k-even is 0.67 or 67% when k=10. Using optimal k parameters is proven to improve k-NN performance. The K-NN algorithm with k-odd parameters, namely k=9, is the best method for classifying KIP scholarship recipients in this research. The results of this research can be considered in determining KIP scholarship recipients worthy of using K-NN.
COMBINING BOOTSTRAPPING AND GENETIC ALGORITHM BASED ON FEATURE SELECTION FOR FRANCHISE LOCATION PROSPECT PREDICTION Tati Mardiana
Jurnal Riset Informatika Vol 3 No 3 (2021): Period of June 2021
Publisher : Kresnamedia Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (822.296 KB) | DOI: 10.34288/jri.v3i3.253

Abstract

Location selection is crucial in the franchise fast-food industry. A thorough location selection model paired with a proper analytical technique can considerably improve the performance of placement decisions, attract more customers, and raise market share and profitability. Franchise location data sets have an imbalanced class nature. The franchise location prospect prediction performance decreased as a result of the dataset's noisy characteristics. We developed a hybrid approach to improve franchise location prospect prediction performance in this study. It combines Bootstrapping to address class imbalance problems and Genetic Algorithm (GA) to select relevant features in the franchise location prospect prediction. We experimented with four different classification methods (Naive Bayes, C4.5, Random Forest, ID3, Gradient Boosted Trees). The results show that almost all classifiers that use Bootstrapping and GA outperform the original technique. We employ the Confusion Matrix and Root Mean Squared Error (RMSE) to examine the proposed method's performance. The test results demonstrate that the proposed method considerably enhances the franchise location prospect's classification performance.

Page 10 of 42 | Total Record : 417


Filter by Year

2018 2025


Filter By Issues
All Issue Vol. 7 No. 4 (2025): September 2025 Vol. 7 No. 3 (2025): Juni 2025 Vol. 7 No. 2 (2025): Maret 2025 Vol. 7 No. 1 (2024): December 2024 Vol. 6 No. 4 (2024): September 2024 Vol. 6 No. 3 (2024): June 2024 Vol. 6 No. 2 (2024): March 2024 Vol. 6 No. 1 (2023): December 2023 Vol. 5 No. 4 (2023): September 2023 Vol. 5 No. 3 (2023): June 2023 Vol 5 No 3 (2023): Priode of June 2023 Vol 5 No 2 (2023): Priode of March 2023 Vol. 5 No. 2 (2023): March 2023 Vol 5 No 4 (2022): Periode September 2023 Vol. 5 No. 1 (2022): December 2022 Vol 5 No 1 (2022): Priode of December 2022 Vol 4 No 4 (2022): Period of September 2022 Vol. 4 No. 4 (2022): September 2022 Vol. 4 No. 3 (2022): June 2022 Vol 4 No 3 (2022): Period of June 2022 Vol 4 No 2 (2022): Period of March 2022 Vol. 4 No. 2 (2022): March 2022 Vol 4 No 1 (2021): Period of December 2021 Vol. 4 No. 1 (2021): December 2021 Vol 3 No 4 (2021): Period of September 2021 Vol. 3 No. 4 (2021): September 2021 Edition Vol. 3 No. 3 (2021): June 2021 Edition Vol 3 No 3 (2021): Period of June 2021 Vol. 3 No. 2 (2021): March 2021 Edition Vol. 3 No. 1 (2020): December 2020 Edition Vol. 2 No. 4 (2020): Period September 2020 Vol. 2 No. 3 (2020): June 2020 Edition Vol. 2 No. 2 (2020): March 2020 Edition Vol. 2 No. 1 (2019): Periode Desember 2019 Vol 1 No 4 (2019): Periode September 2019 Vol. 1 No. 4 (2019): Periode September 2019 Vol. 1 No. 3 (2019): Periode Juni 2019 Vol. 1 No. 2 (2019): Periode Maret 2019 Vol 1 No 2 (2019): Periode Maret 2019 Vol. 1 No. 1 (2018): Periode Desember 2018 More Issue