Articles
858 Documents
ESSENTIAL PROPERTIES RELATED TO SHORT-TIME FRACTIONAL FOURIER TRANSFORM
SULASTERI, SRI;
BACHTIAR, NASRULLAH;
EKASASMITA, WAHYUNI
Jurnal Matematika UNAND Vol 13, No 4 (2024)
Publisher : Departemen Matematika dan Sains Data FMIPA Universitas Andalas Padang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.25077/jmua.13.4.316-323.2024
We start by defining the short-time fractional Fourier transform in this paper, which is a natural generalization of the fractional Fourier transform. We then investigate its essential properties and explore an uncertainty principle related to this proposed transformation.
DYNAMICS OF THE LESLIE-GOWER PREDATOR-PREY MODEL WITH THE BEDDINGTON-DEANGELIS RESPONSE FUNCTION, INCLUDING THE PRESENCE OF INFECTED PREY AND THE FEAR FACTOR OF SUSCEPTIBLE PREY TOWARD PREDATORS
Miswanto, Miswanto;
Windarto, Windarto;
Eridani, Eridani
Jurnal Matematika UNAND Vol 13, No 4 (2024)
Publisher : Departemen Matematika dan Sains Data FMIPA Universitas Andalas Padang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.25077/jmua.13.4.373-387.2024
This article presents a stability analysis of the Leslie-Gower predator-prey model that is extended by taking into account prey infection, the presence of prey fear factors towards predators and the Beddington-DeAngelis response function. The Leslie-Gower model is a classic model that describes the dynamics of predator and prey populations, while the Beddington-DeAngelis response function accommodates the effects of population density and more complex interactions between predators and prey. The infected prey factor describes the prey's resistance to predator attacks becoming weak, while the prey fear factor towards predators affects prey growth.This study combines the components of infection in the prey population and the prey fear factor into the model to reflect the dynamics of disease and fear factors that can affect model stability. The model studied uses the Beddington-DeAngelis response function which describes the interaction between the prey population and the predator. This study uses two methods, namely analytical methods and numerical simulations. Analytical methods to study the stability analysis of the equilibrium point of the model by exploring the conditions under which the equilibrium point of the model is stable or unstable, focusing on the influence of infection parameters and the Beddington-DeAngelis response function on the stability of the equilibrium point. The results of the analysis show that prey infection and the shape of the response function can significantly affect the stability of the Leslie-Gower predator-prey model. The last section of this article presents numerical simulations that illustrate the stability of the equilibrium point of the model
ANALYSIS FACTORS AFFECTING COVID-19 MORTALITY USING COUNT REGRESSION
Qona'ah, Niswatul;
Walukusa, T. Martin
Jurnal Matematika UNAND Vol 13, No 4 (2024)
Publisher : Departemen Matematika dan Sains Data FMIPA Universitas Andalas Padang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.25077/jmua.13.4.270-286.2024
The ”2019 novel coronavirus” known as “ the 2019-nCoV” or simply“COVID-19” has been declared by the World Health organization (WHO), in first quarter of 2020, as a world pandemic and a public health emergency of international concern. Alas, many details related to the COVID-19 have remained unsolved completely. The success of government strategies in fighting the COVID-19 relays mainly on the results from epidemiological or statistical studies. Statistical models play a major role in providing reliable results based on appropriate analyses. Traditional (one-part) models, mixture models and mixed-effects models for counts are used to investigate effects of the WHO-regions and Cumulated COVID-19 cases on the outcome variable COVID-19 new deaths tolls. Overall result reveals there is a strong association between number of new deaths COVID-19 with predictors including the WHO regions and cumulated cases.Besides, models that account for the overdispersion feature have smallest AICs and have reasonable regression model fits.
APLIKASI ALGORITMA LEVERRIER FADDEEV DALAM MENGHITUNG INVERS MATRIKS CENTROSYMMETRIC
Yanita, Yanita;
Indaswari, Marzetha;
Alfiany, Noverina
Jurnal Matematika UNAND Vol 13, No 4 (2024)
Publisher : Departemen Matematika dan Sains Data FMIPA Universitas Andalas Padang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.25077/jmua.13.4.324-339.2024
Matriks centrosymmetric adalah matriks bentuk khusus dari matriks simetris, yang mana matriks ini memiliki struktur simetri pada pusat matriksnya. Di antara beberapa masalah terkait matriks centrosymmetric adalah masalah penentuan invers dan nilai eigennya. Pada penelitian ini dikaji masalah penentuan invers dan nilai eigen dari matriks centrosymmetric dengan bentuk khusus ordo n × n, n ≥ 3 dengan menggunakan algoritma Leverrier Faddeev. Penelitian ini diawali dengan menentukan Yi dan qi dari setiap matriks centrosymmetric berukuran n × n, 3 ≥ n ≥ 8. Selanjutnya dengan memperhatikan pola invers dan nilai eigennya diperoleh bentuk umum invers dan nilai eigen dari matriks centrosymmetric dengan bentuk khusus ordo n × n, n ≥ 3 dalam dua kasus, yaitu untuk n = 2m + 1 dan n = 2m.
METODE TELESCOPING DECOMPOSITION METHOD PADA PERSAMAAN LOGISTIK WINDARTO-ERIDANI-PURWATI DALAM ORDE FRAKSIONAL
Putra, Gusrian;
Mardianto, Lutfi;
Patra, Nugraha Catur Septian
Jurnal Matematika UNAND Vol 13, No 4 (2024)
Publisher : Departemen Matematika dan Sains Data FMIPA Universitas Andalas Padang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.25077/jmua.13.4.222-229.2024
Model logistik Windarto-Eridani-Purwati (WEP) merupakan modifikasi model pertumbuhan logistik dan model monomolekuler yang digunakan untuk menggambarkan pertumbuhan organisme. Penelitian ini bertujuan mengkaji model logistik WEP dalam orde fraksional. Perbandingan dilakukan untuk mengetahui model dengan akurasi yang lebih baik. Metode yang digunakan untuk memperoleh solusi model logistik WEP dalam orde fraksional yaitu Telescoping Decomposition Method (TDM) dan metode Euler. Berdasarkan perhitungan yang telah dilakukan didapatkan model logistik WEP orde fraksional lebih baik dibandingkan model logistik WEP. Hal ini dikarenakan pada model logistik orde fraksional dapat dilakukan suatu pengaturan dalam menetapkan orde fraksionalnya sehingga model logistik WEP orde fraksional lebih fleksibel untuk menghampiri data yang empiris.
ZONAL LABELING OF EDGE COMB PRODUCT OF GRAPHS
Soewongsono, Junita Christine;
Putra, Ganesha Lapenangga;
Ariyanto, Ariyanto;
Pangaribuan, Rapmaida Megawaty
Jurnal Matematika UNAND Vol 13, No 4 (2024)
Publisher : Departemen Matematika dan Sains Data FMIPA Universitas Andalas Padang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.25077/jmua.13.4.388-395.2024
Given a plane graph $G=(V,E)$. A zonal labeling of graph $G$ is defined as an assignment of the two nonzero elements of the ring $\mathbb{Z}_3$, which are $1$ and $2$, to the vertices of $G$ such that the sum of the labels of the vertices on the border of each region of the graph is $0\in\mathbb{Z}_3$. A graph $G$ that possess such a labeling is termed as zonal graph. This paper will characterize edge comb product graphs that are zonal. The results show that $P_m\trianglerighteq_eC_n$, $C_n\trianglerighteq_e C_r$, $S_p\trianglerighteq_e C_n$, and $S_p\trianglerighteq_e F_t$ are zonal in some cases, but not in others.
SUATU KAJIAN TENTANG SOFT SET TERURUT LATTICE (LATTICE ORDERED SOFT SET)
Andika, Witri;
Nazra, Admi;
Helmi, Monika Rianti
Jurnal Matematika UNAND Vol 13, No 4 (2024)
Publisher : Departemen Matematika dan Sains Data FMIPA Universitas Andalas Padang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.25077/jmua.13.4.287-295.2024
Teori soft set pertama kali diperkenalkan oleh Molodsov sebagai suatu metode untuk menangani ketidakpastian. Metode ini mengkaji mengenai pengelompokan objek-objek yang memenuhi atau tidak memenuhi suatu parameter tertentu. Namun, dalam teori soft set tidak terdapat urutan dalam himpunan parameternya sehingga dikaji suatu teori yaitu lattice ordered soft set. Dalam tulisan ini akan dibahas konsep dari lattice ordered soft set,operasi-operasi pada lattice ordered soft set, sifat-sifat yang dapat diturunkan dari operasi-operasi tersebut, dan struktur aljabar dari lattice ordered soft set yaitu monoid dan hemiring.
COMPARISON OF WEIGHT MATRIX IN HOTSPOT MODELING IN WEST KALIMANTAN USING THE GSTAR METHOD
Pratiwi, Hesty;
Imro'ah, Nurfitri;
Huda, Nur'ainul Miftahul;
Ayyash, Muhammad Yahya
Jurnal Matematika UNAND Vol 14, No 1 (2025)
Publisher : Departemen Matematika dan Sains Data FMIPA Universitas Andalas Padang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.25077/jmua.14.1.31-45.2025
This research aims to investigate the usefulness of the Generalized Space- Time Autoregressive (GSTAR) approach in predicting the number of fire hotspots in West Kalimantan Province. Specifically, the study compares the performance of the Queen contiguity method and the uniform weight matrix. Fires in the forests and on the land in West Kalimantan are severe problems that cause harm to the environment and other adverse effects. Data on fire hotspots were collected from four different regencies in West Kalimantan between January 2018 and March 2023 to provide the information used in this study. Compared to the uniform weight matrix, the study results reveal that the Queen contiguity weight matrix produces more accurate results. This is evidenced by the fact that the Root Mean Squared Error (RMSE) and Mean Absolute Deviation (MAD) values are lower in the Queen contiguity weight matrix. Based on these findings, more effective techniques for preventing forest and land fires are anticipated to be considered for planning purposes.
STABILITY ANALYSIS OF DRUG ABUSE TRANSMISSION DYNAMICS
Zakiyyah, Abqorry;
Bahri, Susila
Jurnal Matematika UNAND Vol 14, No 1 (2025)
Publisher : Departemen Matematika dan Sains Data FMIPA Universitas Andalas Padang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.25077/jmua.14.1.103-116.2025
This research introduced a nonlinear deterministic model known as SLARS (Susceptible, Light Users, Addicted, and Reformed Users) along with a stability analysis to investigate the dynamics of drug abuse transmission. The basic reproduction number (R0) was calculated using the next-generation matrix method. Following this, the study examined the local stability of both the drug abuse-free and endemic equilibrium points. The findings indicated that when R0 is below 1, the drug abuse-free equilibrium point is locally stable. In contrast, when R0 is greater than 1, the endemic equilibrium point shows local stability. Additionally, simulation results supported the analytical conclusions of the study.
RAINFALL MODELLING IN EAST JAVA USING A MODIFIED ORNSTEIN-UHLENBECK MODEL
Setyorini, Elisabeth Yeyen;
Putri, Endah R. M.
Jurnal Matematika UNAND Vol 14, No 1 (2025)
Publisher : Departemen Matematika dan Sains Data FMIPA Universitas Andalas Padang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.25077/jmua.14.1.46-61.2025
One of the current global issues is climate change and weather variability. This phenomenon has real impacts on various regions, including East Java Province. East Java is experiencing increased rainfall intensity as one of the effects of climate change. High and continuous rainfall intensity can trigger disasters such as flooding, which has the potential to cause significant financial losses for the community. Therefore, effective risk management becomes crucial. One possible solution to address these risks is through the use of financial derivatives. The initial step in risk management involves modeling the behavior of rainfall. It is assumed that the rainfall pattern follows a mean-reverting process, specifically the Ornstein-Uhlenbeck process. The existing Ornstein-Uhlenbeck model is then modified to ensure that the resulting model accurately reflects the rainfall conditions in East Java. To validate the modified model, simulations of the Ornstein-Uhlenbeck process were conducted using estimated parameter values. The Ornstein-Uhlenbeck simulation achieved a minimum MSE score that approaches zero. This MSE score indicate that the proposed modified Ornstein-Uhlenbeck model is accurate in representing the rainfall patterns in East Java.