cover
Contact Name
Muji Setiyo
Contact Email
muji@unimma.ac.id
Phone
+6282330623257
Journal Mail Official
autoexp@unimma.ac.id
Editorial Address
Universitas Muhammadiyah Magelang, Jl. Bambang Soegeng KM. 4 Mertoyudan Magelang, Telp/Faks : (0293) 326945
Location
Kab. magelang,
Jawa tengah
INDONESIA
Automotive Experiences
ISSN : 26156202     EISSN : 26156636     DOI : 10.31603/ae
Automotive experiences invite researchers to contribute ideas on the main scope of Emerging automotive technology and environmental issues; Efficiency (fuel, thermal and mechanical); Vehicle safety and driving comfort; Automotive industry and supporting materials; Vehicle maintenance and technical skills; and Transportation policies, systems, and road users behavior.
Articles 14 Documents
Search results for , issue "Vol 7 No 1 (2024)" : 14 Documents clear
Experimental Investigation for Enhancement of Heat Transfer Coefficient in Car Radiator by Using Multiwall Carbon Nanotube (MWCNT) Nanofluid Peeraiah, M.; Rao, K. Nagamalleswara; Balakrishna, B.
Automotive Experiences Vol 7 No 1 (2024)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.10455

Abstract

Improving heat transfer coefficient is a significant subject of study in many engineering domains. The use of nanofluids in car radiators might boost the heat transfer coefficient. The current study investigates a car's radiator's heat transfer coefficient and thermal conductivity. The heat transmission parameters of a car radiator were analyzed for coolant mass flow rates ranging from 600 to 1200 liters/hour and nanofluid concentrations ranging from 0.2 to 0.8% by volume. The primary coolant was prepared by combining water and ethylene glycol in a 60:40% combination with multi-walled carbon nanotube nanoparticles. The coolant's input temperatures were varied between 30 °C and 80 °C by impinging an air jet into the car radiator through a hallow cone nozzle plate with and without spacing. The result demonstrates that the volume flow rate of coolant on the tube side increases considerably as the heat transfer coefficient increases. At a nanoparticle concentration of 0.8 vol. %, the nanofluid's total heat transfer coefficient is enhanced by 12% compared with the base fluid. The heat transfer coefficient is improved by 42.6% for 0.8% volume of MWNCT nanofluid without spacing of the hallow cone nozzle plate and by 51.9% with spacing of the hallow cone nozzle plate.
Study on Solar Powered Electric Vehicle with Thermal Management Systems on the Electrical Device Performance Herlambang, Yusuf Dewantoro; Sulistiyo, Wahyu; Margana, Margana; Apriandi, Nanang; Nursaputro, Septiantar Tebe; Marliyati, Marliyati; Setiyo, Muji; Purwanto, Wawan; Rochman, Muhammad Latifur; Shyu, Jin Cherng
Automotive Experiences Vol 7 No 1 (2024)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.10506

Abstract

This study aims to determine the reliability of applying a thermal management system in conjunction with Internet of Things in solar electric cars. In conventional electric cars or those whose driving energy source comes from gasoline fuel; the applied thermal management system is mainly used as a coolant for the internal combustion engine. However, for electric cars the thermal management system may be used for the main components such as controllers that convert solar module energy into electricity and batteries. Results from tests utilizing six DC fans for air cooling of the thermal management system yield two variations of battery charging conditions from the solar modules, namely variations of 25 and 400 turns of the trimmer constant current step-up charger. Test results from the proposed thermal management system show that the highest step-up charger temperature is 35.75 °C with voltage of 57.64 V for the variation of 25 laps. The test results on the battery voltage and temperature show that the highest battery temperature reaches 31.75 °C with voltage of 57.3 V at the variation of 25 rounds.
Optimization of the MCM-48 Synthesis Method as a Catalyst in the Esterification of Nyamplung Seed Oil into Biodiesel Kolo, La; La Kalamu, La Yusran; Soekamto, Nunuk Hariani; Taba, Paulina; Fauziah, St.; Maming, Maming; Zakir, Muhammad
Automotive Experiences Vol 7 No 1 (2024)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.10570

Abstract

This study was conducted to synthesize MCM-48 based on the surfactants (cetyltrimethylammonium bromide (CTAB) and Triton X-100). The effect of surfactant on MCM-48 was studied in the esterification of nyamplung seed oil. Optimization of the amount of surfactant in the MCM-48 catalyst in the esterification of nyamplung seed oil was carried out by washing and calcination methods. Comparison of GC-MS method and acid-base titration was also studied to determine the activity of the MCM-48 catalyst in the esterification. The results of the Mann Whitney statistical test showed that there was no significant difference (Asymp. Sig. (2-tailed) = 0.967) for the two methods. The effect of the active site on the MCM-48 catalyst activity in the esterification was characterized by FTIR and XRD. The catalyst's activity is significantly influenced by both the percentage transmittance of the silanol active site and the surfactant removal method. The MCM-48 catalyst manufactured by calcination (CTAB-MCM-48/650) performed 12.31% better than the washing approach (CTAB-MCM-48/1w). However, the CTAB-MCM-48 catalyst can be applied to the simultaneous reaction (esterification and transesterification) of the conversion of nyamplung seed oil into biodiesel.
Application of Multi-objective Adjoint-based Aerodynamic Optimisation on Generic Road Vehicle with Rear Spoiler Yudianto, Aan
Automotive Experiences Vol 7 No 1 (2024)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.10577

Abstract

Finding possible solutions where there are multiple conflicting objectives to be simultaneously satisfied is a challenging situation. Multi-objective optimisation of a rear spoiler on a generic road vehicle model is carried out by using adjoint-based optimisation coupled with Computational Fluid Dynamics. The study aims to reduce the vehicle drag and increase vehicle downforce simultaneously by optimising the shape of the spoiler, by allowing the deformation to achieve the most optimised shape assuming no manufacturing constraint. The OpenFOAM software was used for the solver. A strategy for multi-objective optimisation was proposed by assigning appropriate objective function weight, leading to some possible solutions and Pareto front of the proposed design family. Five optimisation solutions of the non-dominated solution Pareto front resulting from the spoiler shape optimisation are presented, explaining the trade-off between conflicting drag and downforce objectives on the vehicle model. The baseline geometry of the simulation is in good agreement with the experimental measurement. The analysis of the shape changes in the proposed optimisation is deeply investigated in terms of the optimised geometry deformation, velocity contour comparison, recirculating region on the base, pressure coefficient comparison and stream-wise velocity component at the slant region of the model. The adjoint-based optimisation method in the presence study can handle multiple objective optimisations and generate possible optimised spoiler shapes to reduce drag and increase downforce. Free deformation of the shape yields in the unique shapes of the spoiler, enabling to manipulate of the base flow at the rear of the vehicle model.
Investigating Knocking Potential, Cycle Stability, and Emission Characteristics in Lean Spark Ignition Engine with Gasoline, Ethanol, and Methanol Mokhtar, Mokhtar; Sugiarto, Bambang; Agama, Askar Adika; Kurniawan, Ade; Auzani, Ahmad Syihan
Automotive Experiences Vol 7 No 1 (2024)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.10607

Abstract

In this paper, an investigation of the use of gasoline-ethanol-methanol on the spark ignition engine is presented, it is not common practice on public roads to use three fuels simultaneously in a spark-ignition engine. Using methanol reduces the ignition delay during combustion, especially at lean air-fuel ratios, and reduces knocking potential in small amounts. The best result ignition delay with value λ= 1,3 obtained in the E5M15 mixture with SoC occurred at 325 CAo, while the value λ= 1,0 also obtained on the same mixture with SoC occurred at 321,5 CAo. The CCV results indicate a more sloping increase in the COV (coefficient of variation) value when using GEM fuel, particularly with the addition of more methanol. The addition of methanol enhances combustion progression and improves the ability of the fuel blend to sustain combustion under lean conditions. Regarding the torque and power values, at λ= 1,0; 1,1; 1,2 are not significantly different, while the value λ= 1,3 is below the other λ values.
Characterizing of Nano Activated Bio-Carbon of Sago Waste as a Homogeneous Combustion Catalyst Nanlohy, Hendry Y.; Riupassa, Helen; Setiyo, Muji
Automotive Experiences Vol 7 No 1 (2024)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.10619

Abstract

Alternative fuels were developed by blending crude coconut oil and bio-carbon nanoparticles. Bio-carbon, derived from sago waste via pyrolysis and ground using a ball mill, underwent FTIR testing to assess its energy absorption capabilities. SEM analysis was conducted to examine the surface morphology of bio-catalyst with and without crude coconut oil. The findings indicate that incorporating bio-catalyst can enhance mechanical properties, facilitating rapid heat absorption, as evidenced by reduced flashpoint and viscosity. In addition, the results show an increase in fuel mass, broadening of molecular contacts, increased reactivity, and increased heat absorption for easier ignition. This phenomenon indicates that bio-carbon of sago waste have great potential for biofuel use as a homogeneous combustion catalyst.
Investigation of the Vehicle Driving Trajectory During Turning at Intersectional Roads Using Deep Learning Model Yong, Ericsson; Peeie, Mohamad Heerwan Bin; Zulkifli, Abdullah Bin; Ishak, Muhammad Izhar; Ibrahim, Mohd Zamri Bin; Zakaria, Muhammad Aizzat Bin; Mohd Razelan, Intan Suhana Binti; Ab. Nasir, Ahmad Fakhri Bin; Mohd Jawi, Zulhaidi
Automotive Experiences Vol 7 No 1 (2024)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.10649

Abstract

Two-thirds of vehicle accidents in Malaysia occurred at the straight type of roads, followed by intersection-type roads. Despite the deployment of traffic lights on the road, accidents still occur which are caused by illegal maneuvers, speeding or misjudgment of other’s actions. Hence, motivated by the lack of previous research regarding causes of accidents on intersectional roads, this study aims to observe the pattern of the vehicles’ speed and turning angle during the right turn after the traffic stop at the intersection road. To obtain these parameters, video samples of vehicles at two types of intersections were obtained and analyzed via YOLOV7 and DeepSORT. The two road intersections researched are four-legged intersection and three-legged intersection. 153 and 35 vehicle samples were collected from these types of road intersections, respectively. It was observed that 78 and 75 vehicles exit towards the nearest and furthest lanes at four-leg controlled crossings on divided roads. While, at a single-lane to a dual carriageway road intersection, 26 and 9 vehicles exit towards the nearest and furthest lanes, respectively. From the research, 16.52 - 17.53 km/h and 67.57°-73.33° are the most optimal turning speeds and angles respectively for vehicles at four-leg controlled crossings. Whereas 14.48 - 15.51 km/h and 144.77° - 154.403° are the most optimal turning speeds and angles respectively for vehicles at a single-lane to a dual carriageway road intersection.
Performance of Transition Metal Supported Al2O3 Coated on Honeycomb Catalysts and Its Segmentation on Exhaust Gasses Oxidation Buwono, Haris Puspito; Wicaksana, Hangga; Hartono, Moh; Waluyo, Joko; Daroini, Moch. Fauzun; Muslim, Ilham Taufik; Machida, Masato
Automotive Experiences Vol 7 No 1 (2024)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.10686

Abstract

The oxidation of carbon monoxide (CO) and unburnt hydrocarbons (HC) under segmented honeycomb catalysts was investigated using actual exhaust gas mixtures from a gasoline-fueled internal combustion engine of a motorcycle. The honeycomb catalysts were prepared through a wet process, resulting in four types coated with transition metals (Cu, Cr, Fe, and Ni) supported on Al2O3. The oxidation of CO and HC was monitored using an exhaust gas analyzer across a range of air-to-fuel ratios (AFR), from lean to rich, under stationary conditions. The results demonstrate that the honeycomb catalysts effectively decreased CO and HC concentrations in the exhaust gas. Among the transition metal oxide honeycomb catalysts, Cr and Ni exhibited high CO and HC conversion rates, surpassing those observed with Cu. The average CO and HC conversion calculations, spanning from lean to rich air-to-fuel ratios, were consistent with the actual conversion rates achieved. Furthermore, the study investigated the effect of honeycomb segmentation on CO and HC conversion. Surprisingly, the catalytic performance of Cr and Ni remained high even with longer gaps in the honeycomb. Interestingly, the conversion of CO and HC over the iron oxide honeycomb catalyst increased as the gap in the honeycomb became longer. This is likely due to an increase in the gap size and enhanced re-mixing of reactants (CO, HC, and O2) caused by recirculation. Thus, this study provides valuable elucidation on the potential application of segmented honeycomb catalysts for reducing CO and HC emissions in exhaust gases.
Characterization of Combustion in Cylindrical Meso-Scale Combustor with Wire Mesh Flame Holder as Initiation of Energy Source for Future Vehicles Sanata, Andi; Ilminnafik, Nasrul; Asyhar, Muhammad Maulana; Nanlohy, Hendry Y.; Kristianta, Franciscus Xaverius; Sholahuddin, Imam
Automotive Experiences Vol 7 No 1 (2024)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.10715

Abstract

The research aims to analyze and reveal combustion characteristics in a Cylindrical Meso Scale (CMS) Combustor with a wire mesh flame holder as a reference for designing a compact, efficient, and high-density energy source for future vehicles. This experiment analyzes the combustion ’s of a butane gas (C4H10)-air mixture in a cylindrical meso-scale (CMS) combustor with the addition of wire mesh flame holder on the stability of the combustion flame, as initiation of future vehicle energy source. The diameter of the CMS combustor with wire mesh flame holder is varied to give an idea of the effect of heat loss on the combustion flame's characteristics. The results show that the wire mesh as a flame holder is essential in the combustion stabilization mechanism. A stable flame can be stabilized in a CMS combustor with wire mesh. Variations in the diameter of the CMS combustor will result in variations in the surface-to-volume ratio, heat loss, and contact area of the wire mesh flame holder. At a large diameter, it produces the characteristics of a combustion flame with a more stable flame stability limit than a smaller diameter, a dimmer flame visualization than a smaller diameter at the same air and fuel discharge, a more distributed flame mode map area than the smaller diameter, lower flame temperature and combustor wall temperature than the smaller diameter, and relatively higher energy output than the smaller diameter.
Collapse Behavior and Energy Absorption Characteristics of Design Multi-Cell Thin Wall Structure 3D-Printed Under Quasi Statistic Loads Wirawan, Willy Artha; Junipitoyo, Bambang; Putro, Setyo Hariyadi Suranto; Sabitah, A’yan; Suudy, Ahmad Hamim; Ridwan, Ridwan; Choiron, Moch. Agus
Automotive Experiences Vol 7 No 1 (2024)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.10892

Abstract

Crashworthiness is a passive device that has an important function as an absorbing component of the impact energy resulting from an accidental event. The main problem in the crashworthy design is the dimensional limitation on the front end of the vehicle with the driver so that most of the energy absorption is limited. Besides, the complexity of crashworthiness design is difficult to make conventionally. This research aims to find out the effectiveness of crashworthiness design in energy absorption and the resulting deformation patterns. Crashwortines are made in a multi-cell shape using PLA material and printed using a 3D printing raise machine. Crashworthiness is produced with four variation shapes of a Multi-cell circle (MCC), Multi-Cell square (MCS), Multicell pentagonal (MCP), and Multi-Cell pentagonal circles (MCPC) with a side thickness of 2 mm and a length of 150 mm. Experimental quasi-static testing is carried out in the frontal direction using a UTM machine at an operating speed of 2mm/s. The results of the study show that the design of the crash box of the pentagon circle has a significant increase in the energy absorption value of 62.49%, which can be recommended in future impact resistance tube designs. The characteristics of the deformation pattern and the failure resulting from the crashworthiness tend to form the pattern of the bending lamina failure. Failures can occur due to plastic fold, elastic bend, and pressure deformation mechanisms followed by new folding formations (lobes).

Page 1 of 2 | Total Record : 14