cover
Contact Name
Dr. Basari
Contact Email
basari.st@ui.ac.id
Phone
+6221-29120943
Journal Mail Official
editor_mst@ui.ac.id
Editorial Address
Universitas Indonesia ILRC Building, 1st Floor, Depok 16424, Indonesia Kota depok, Jawa barat INDONESIA
Location
Kota depok,
Jawa barat
INDONESIA
Makara Journal of Technology
Published by Universitas Indonesia
ISSN : 23552786     EISSN : 23564539     DOI : https://doi.org/10.7454/mjt
MAKARA Journal of Technology is a peer-reviewed multidisciplinary journal committed to the advancement of scholarly knowledge and research findings of the several branches of Engineering and Technology. The Journal publishes new results, original articles, reviews, and research notes whose content and approach are of interest to a wide range of scholars. It also offers rapid dissemination. MAKARA Journal of Technology covers the recent research in several branches of engineering and technology include Electrical & Electronics Engineering, Computer Engineering, Mechanical Engineering, Chemical & Bioprocess Engineering, Material & Metallurgical Engineering, Industrial Engineering, Civil & Architecture Engineering, and Marine Engineering. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the engineering & technology and the effect of rapid publication on the research of others. This journal, published three times each year, is where readers look for the advancement of discoveries in engineering and technology.
Articles 485 Documents
Effect of Photoperiodicity on Co2 Fixation By Chlorella vulgaris Buitenzorg in Bubble Column Photobioreactor For Food Supplement Production Wijanarko, Anondho; Dianursanti, Dianursanti; Witarto, Arief Budi; Soemantojo, Roekmijati Widaningroem
Makara Journal of Technology Vol. 8, No. 2
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

To reduce the level of CO2 content in air, effort on converting CO2 to useful products is required. One of the alternatives includes CO2 fixation to produce biomass using Chlorella vulgaris Buitenzorg. Chlorella vulgaris Buitenzorg is applied for production of food supplement. Chlorella vulgaris Buitenzorg is also easy to handle due to its superior adaptation. Currently, Chlorella vulgaris Buitenzorg has been analyzed by some experts for its cellular composition, its ability to produce high quality biomass and the content of essential nutrition. A series of experiments was conducted by culturing Chlorella vulgaris Buitenzorg using Beneck medium in bubbling column photobioreactor. The main variation in this experiment was photoperiodicity, where growth of Chlorella vulgaris Buitenzorg was examined during photoperiodicity condition. The difference between CO2 gas concentration of inlet and outlet of the reactor during operational period, was compared to the same experiment under continuous illumination. Under photoperiodicity of 8 and 9 h/d, the culture cell densities (N) were approximately 40 % higher than under continuous illumination. Final biomass density of Chlorella vulgaris Buitenzorg at 9 h/d illumination was 1.43 g/dm3, around 46% higher than under continuous illumination. Specific carbon dioxide transfer rate (qCO2) in photoperiodicity was 50-80% higher than under continuous illumination. These experiments showed that photoperiodicity affects the growth of Chlorella vulgaris Buitenzorg The specific growth rate (μ) by photoperiodicity was higher than that by continuous ilumination while the growth period was two times longer. Based on the experiments, it can be concluded that photoperiodicity might save light energy consumption. The prediction of kinetic model under continuous illumination as well as under photoperiodicity illumination showed that Haldane model became the fitted kinetic model.
Secondary Flow Experimental Study for Axial Compressor Cascade Strong Stagger With and Without Tip- Clearance: Static Pressure Distribution on Blade Surface Syamsuri, Syamsuri
Makara Journal of Technology Vol. 8, No. 2
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Secondary Flow Experimental Study for Axial Compressor Cascade Strong Stagger With and Without Tip- Clearance: Static Pressure Distribution on Blade Surface. The performance of blade cascade is influenced by the growth and boundary layer’s separation along blade surface and endwall (casing and hub). The secondary flow which happens near hub and casing compressors is three dimentional flow separation phenomenon comes from interaction blade boundary layer with casing and hub boundary layers in the compressor. The secondary flow causes secondary losses, blockage effect, and turning angle (deflection) distribution along blade span. The result of the research shows that the increase of the angle of attack reveals lines of constan pressure to be curved forward (upstream) or pressure gives rise to spanwise caused by a strong curl flow. Separation is also increase and cross between two blades. Hence, three dimentional separation region in corner also increase.
Synthesize of Emulsion Polymer Latex for Sub-Grade CBR Improvement in The Road Construction Moto, Keba; Julian, V.; Syamsudin, Syamsudin; Wiradi, T. A.; Wijaya, S. R.
Makara Journal of Technology Vol. 8, No. 2
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Synthesize of emulsion polymer latex for sub-grade CBR improvement in the road construction. Latex polymer for California Bearing Ratio (CBR) enhancement in sub-grade soil of road building has been prepared by emulsion polymerizations technique. The prepared polymer then characterize by Fourier Transform Infrared (FTIR). For application purpose, CBR test was done to the compacted polymer added-soil. The CBR test is done also for both soaked and unsoaked samples. It is found that our latex polymer is better then other imported latex polymer. For the latex polymer, which is design to have Temperatur glass (Tg) around 9.8-19.6o, indicating the formation of C=O and – C-O-C- bonds at 1732-1736 cm-1 energy absorption as binder groups. CBR test results show that our latex polymer has CBR value around 15-18 % compare to the soil without polymer binder.
Wavelenght-Dispersive X-Ray Flourescence Accuration Widyatmoko, H.
Makara Journal of Technology Vol. 8, No. 2
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Wavelenght–Dispersive X-Ray Flourescence Accuration. X-Fuorescence spectrometry is a method, which is increasingly applied in the geochemical analysis. X-Fuorescence spectrometry is classified under two categories – WDXRF (wavelenght – dispersive X-ray fluorescence spectrometer) and EDXRF (energy-dispersive X – ray fluorescence spectrometer). WDXRF can be configured as a sequential spectrometer , a simultaneous spectrometer or a hibrid instrument, which combines the advantages of the simultaneous and sequential spectrometers into one instrument. Each instrument is different in some characteristics, and each has applications for which it is specifically suited. In this investigation sequential spectrometer PW 1450 was used to analyze the major, minor and trace elements in the samples. The standards used in calibrating the PW 1450 for the analysis of all samples are materials of known composition (30 internatioanal standards and 66 standards from Institut für Mineralogie der Uni. Köln, Germany). Interelement and matrix effects are treated by matrix matching of samples and standards, dilution, preconcentration of the element of interest, and mathematic corrections during data analysis. The examination of two samples and the statistic description using standard deviation and coefficient of variant show that the XFA is accurate enaugh for many elements, especially for the major elements, but for Mg, Ca, K, Na, P, S, Co, Rb, Zn, Ni, Ba, Pb in comparison with Atomic Absorpsion Spectrometry (AAS), Flame Emission Spectrometer (FES), Inductively Coupled Plasma (ICP) and photometer it is less sensitive. It is posible to devaluate the errors by using coefficient of variant and standard deviation.
Fuel Injection System for One Cylinder Motor Cycle Engine Sugiarto, Bambang
Makara Journal of Technology Vol. 8, No. 3
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Fuel Injection System for One Cylinder Motor Cycle Engine. Fuel injection has been developed for many years. But its common application is limited on car’s engine. With many reason fuel injection systems in motorcycle one cylinder engine has not been widely used yet. Fuel Injection System allows the amount of fuel, injected to be controlled appropriate to engine parameters such as engine speed, amount of air inducted to cylinder, temperature, for each cycle, over the entire engine operating conditions. This fuel injection research is done to find out the Volumetric Efficiency of the intake manifold system, the amount of fuel need to be injected for each engine cycle, and the engine characteristics over variation of test conditions. This research based on Honda CB100 engine, at applied thermodynamic Laboratory of Mechanical Engineering Department, Faculty of Engineering University of Indonesia. Experiment data from this research shows the characteristics of injector duration as functions of engine speed, intake pressure, on one cylinder engine and the results of this research shows a good Volumetric Efficiency of the intake manifold designed using CFD (Computational Fluid Dynamic).
The Effects of Influent Debit on Hydrodynamic Characteristic of Bojongsoang Facultative Pond: Without Wind Effects Hadisoebroto, Rositayanti; Notodarmojo, Suprihanto
Makara Journal of Technology Vol. 8, No. 3
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The Effects of Influent Debit on Hydrodynamic Characteristic of Bojongsoang Facultative Pond: Without Wind Effects. The performance of facultative pond in Bojongsoang WWTP have reported to be unstable. One of the cause of the unstable performance is the hydrodynamic characteristics that not met the criterion. The improper hydrodynamic characteristics are included the existence of dead-zone, the short-circuiting, and the turbulence due to eddy current. The study was to analyze the effect of the influent debit variation on the hydrodynamic characteristics of the pond using mathematical model. The two-dimensional hydrodynamic model was built from two hydrodynamic equations which are continuity and momentum equations. The equations were solved by finite-difference numerical method of semi-implicit (Crank-Nicolson). From the simulation results, the Froude number of the water flow was analyzed. Beside that, the effective residence time and the effective area were calculated. All of them were done to analyzed the existence of the dead-zone in the pond. The simulation results show that the dead-zone was exist in the center of the pond. when the influent debit was larger, the effective residence time and the effective area become larger. The distribution of the Froude number value shows that the area with the value of 10-10 become reduced in the larger influent debit. The existence of the dead-zone was reduced since the influent debit become larger. It can be said that the larger influent debit can improve the hydrodynamic characteristics of the pond.
Modelling and Simulation of Packed Bed Catalytic Converter for Oxidation of Soot in Diesel Powered Vehicles Flue Gas Nasikin, Mohammad; Wulan, Praswasti P.D.K.; Andrianty, Vita
Makara Journal of Technology Vol. 8, No. 3
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Modelling and Simulation of Packed Bed Catalytic Converter for Oxidation of Soot in Diesel Powered Vehicles Flue Gas. Diesel vehicle is used in Indonesia in very big number. This vehicle exhausts pollutants especially diesel soot that can be reduces by using a catalytic converter to convert the soot to CO2. To obtain the optimal dimension of catalytic converter it is needed a model that can represent the profile of soot weight, temperature and pressure along the catalytic converter. In this study, a model is developed for packed bed catalytic converter in an adiabatic condition based on a kinetic study that has been reported previously. Calculation of developed equations in this model uses Polymath 5.X solver with Range Kutta Method. The simulation result shows that temperature profile along catalytic converter increases with the decrease of soot weight, while pressure profile decreases. The increase of soot weight in entering gas increases the needed converter length. On the other hand, the increase of catalyst diameter does not affect to soot weight along converter and temperature profile, but results a less pressure drop. For 2.500 c diesel engine, packed bed catalytic converter with ellipse’s cross sectional of 14,5X7,5 cm diagonal and 0,8 cm catalyst particle diameter, needs 4,1 cm length.
Influence of Connection Placement to the Behavior of Precast Concrete Exterior Beam-Column Joint Tjahjono, Elly; Purnomo, Heru
Makara Journal of Technology Vol. 8, No. 3
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Influence of Connection Placement to the Behavior of Precast Concrete Exterior Beam-Column Joint. This paper presents an experimental study on the influence of connection placement to the behaviour of exterior beamcolumn joint of precast concrete structure under semi cyclic loading. Four half-scale beam-column specimens were investigated. Three beam-columns were jointed through connection that are placed in beam-column joint region and the forth is connected at the plastic hinge potensial region of the beam. Crack patterns, strength, stiffness and ductility of the test specimens have been evaluated. The test result indicated that all beam-column specimens show good ductility behavior.
Optic Properties on AgGaSe2 Polycristal Fabrication Soepardjo, A. Harsono; Janusetiawan, I Dewa Made
Makara Journal of Technology Vol. 8, No. 3
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Optic Properties on AgGaSe2 Polycristal Fabrication. Polycristal AgGaSe2, is compound (I-III-VI2) a semiconductor as basic material for thin film for solar cell. Polycristal was succesfully grown using Bridgmann Method, heated on sequential temperature treatment until 850°C and cooled down slowly until room temperature. Results observed were in the form of ingot (bars) with more or less 3 cm length and 13 mm in diameter. By using X-Ray Fefraction, composition obtained of each element (weight %) was Ag = 29,3996 %, Ga = 36,8123 % and Se = 30,29 % while using X-Ray Difraction lattice parameter obtained/calculated a = 4,4112 Å, c = 8,8854 Å, and c/a = 2,01426.
Study of 2D and 3D Optical Beam Induced Voltage Imaging Using Photoresistor Sensor Warsito, Warsito; Suciyati, Sri Wahyu; Harnani, Susi; Dzakwan, Akhmad
Makara Journal of Technology Vol. 9, No. 1
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Study of 2D and 3D Optical Beam Induced Voltage Imaging Using Photoresistor Sensor. This article shows a method to study OBIV (optical beam induced voltage) imagerie system, that usually employ a laser scanning microscopy system. The OBIV imagerie system developed use a photoresistor sensor as a sample and simultaneously it can be used for analyzing its inhomogeneity response. Resolution of the system is still low, about 350μm due to high value of incident light diameter. The results inform that photoresistor sensors gave an optimum response if the incident light hits the center of sensible zone.

Page 6 of 49 | Total Record : 485