cover
Contact Name
Andi Firdaus Sudarma
Contact Email
andi.firdaus@mercubuana.ac.id
Phone
+6221-5840815
Journal Mail Official
ijimeam@mercubuana.ac.id
Editorial Address
Universitas Mercu Buana Program Studi S2 Teknik Mesin Jl. Meruya Selatan No. 01, Kembangan, Jakarta Barat 11650, Indonesia
Location
Kota adm. jakarta barat,
Dki jakarta
INDONESIA
International Journal of Innovation in Mechanical Engineering and Advanced Materials
ISSN : 2477541X     EISSN : 24775428     DOI : https://dx.doi.org/10.22441/ijimeam
The journal publishes research manuscripts dealing with problems of modern technology (power and process engineering, structural and machine design, production engineering mechanism and materials, etc.). It considers activities such as design, construction, operation, environmental protection, etc. in the field of mechanical engineering and other related branches. In addition, the journal also publishes papers in advanced materials related with advanced electronic materials, advanced energy materials, advanced engineering materials, advanced functional materials, advanced materials interfaces, and advanced optical materials.
Articles 103 Documents
Review: Optimizing Plastic Injection Processes for Enhanced Quality and Sustainable Manufacturing Lase, Asaeli Tongoni; Arwati, I Gusti Ayu
International Journal of Innovation in Mechanical Engineering and Advanced Materials Vol 7, No 1 (2025)
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/ijimeam.v7i1.31721

Abstract

In the automotive world, plastic products are components that cannot be separated. Almost all automotive products use plastic because it is easy to produce, and the price is relatively cheap compared to other materials. For applications such as covers, the demand on plastic surface quality are higher than for different uses. Therefore, a lot of costs are incurred to achieve this quality. However, ongoing efforts have decreased the time and expense of developing plastic molds. Many researchers have conducted studies to improve the quality of these products. This review consolidates several research articles on optimizing plastic injection processes to reduce defects and improve product quality. Techniques such as Taguchi Method, Response Surface Methodology (RSM), Artificial Neural Networks (ANN), and Finite Element Method (FEM) were evaluated in this research. This review highlights the importance of process parameters such as melt temperature, injection pressure, and cooling time, as well as the role of digital simulation in designing efficient and sustainable molds. The results of the study show that in several studies, defects often occur in the product without carrying out the optimization process. Still, the Taguchi and ANOVA methods can reduce the weld line and sink after optimizing the process parameters, such as melting temperature, injection pressure, cooling time, and injection speed. Mark up to 30%. These findings highlight the potential of these techniques to significantly improve product quality and support more sustainable manufacturing practices in the plastic injection molding industry.
Use of Hibiscus rosa-sinensis as a Green Corrosion Inhibitor for Valve Materials in RO Water Pudjiwati, Sri; Sanusi, Yasa; Arwati, I Gusti Ayu
International Journal of Innovation in Mechanical Engineering and Advanced Materials Vol 7, No 2 (2025)
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/ijimeam.v7i2.32806

Abstract

Valves are mechanical devices that regulate the flow of oil and gas fluids and are typically constructed from materials that are heat-resistant, corrosion-resistant, and capable of withstanding high pressure. However, observations from valve manufacturing companies in the Banten area have shown that valve components made from medium carbon steel ASTM A105N are susceptible to corrosion during hydrotesting, particularly when using reverse osmosis (RO) water as the testing medium. This corrosion can degrade product quality before delivery to customers. To address this issue, this study investigates the use of Hibiscus rosa-sinensis as a green corrosion inhibitor. The objective of this research is to evaluate the corrosion rate, inhibitor efficiency, and surface morphology of ASTM A105N valve materials using Hibiscus rosa-sinensis in RO water media, with varying inhibitor concentrations and immersion durations. The electrochemical methods used include Potentiodynamic Polarization, Electrochemical Impedance Spectroscopy (EIS), Chronoamperometry, and Scanning Electron Microscopy (SEM). Results from the corrosion rate tests indicated that the highest inhibitor efficiency—59.04%—was achieved at 24 hours of immersion with a 2 g inhibitor concentration. This condition also yielded the lowest corrosion rate of 1.2231 × 10⁻² mm/year and the lowest corrosion current (Icorr) of 3.2601 × 10⁻⁶ A/cm². Chronoamperometry testing confirmed these findings with the lowest electric charge value of 0.0125 C. SEM analysis further revealed a more uniform and homogeneous protective coating on the metal surface under these conditions. Based on these results, Hibiscus rosa-sinensis demonstrates promising performance as a green corrosion inhibitor and is recommended as an additive in RO water for valve hydrotesting. This study highlights the potential of environmentally friendly and cost-effective inhibitors in reducing corrosion risk in valve materials.
Performance Analysis of Centrifugal Pumps Before and After Wear Ring Restoration Rifai, Moh Sahal; Ruhyat, Nanang; Surachman, Arief
International Journal of Innovation in Mechanical Engineering and Advanced Materials Vol 7, No 1 (2025)
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/ijimeam.v7i1.30324

Abstract

A pump is a mechanical device used to move fluids from a lower elevation to a higher one. In general, pumps are classified into two types: positive displacement pumps and non-positive displacement pumps. Centrifugal pumps fall into the latter category and operate by converting mechanical energy into kinetic energy to transport fluids. A centrifugal pump consists of several key components, including the casing, shaft, bearing, coupling, and impeller. In the case of closed impeller-type centrifugal pumps, wear rings (wearing components) are installed to provide a clearance between the impeller and the casing, preventing physical contact during operation. The size of this clearance significantly affects pump performance. Wear ring damage can result from mechanical wear, corrosion, cavitation, and fatigue, leading to performance losses such as reduced flow rate, lower pressure, and decreased efficiency. This research aims to analyze the effect of wear ring damage on the performance of a centrifugal pump by comparing operational data before and after repair of the wearing components. The performance parameters evaluated include pump head, pressure, hydraulic power, motor power, and overall efficiency. Data were collected through a structured procedure consisting of preparation, testing, measurement, and analysis. Prior to repair, the pump operated with a wear ring clearance of 1.2 mm, resulting in an average efficiency of 8.5% and a flow rate of 0.000646 m³/s. After the clearance was restored to 0.43 mm, the average efficiency increased to 15.5%, with a corresponding flow rate of 0.000932 m³/s. These results demonstrate that maintaining wear ring clearance within recommended standards significantly improves pump performance, highlighting the importance of regular maintenance and timely component repair.
Handling and Stability Analysis of an Autonomous Vehicle Using Model Predictive Control in a CarSim–Simulink Co-Simulation Environment Yamin, Mohamad; Mumtaz, Mega Maulida; Firmansyah, Riyan
International Journal of Innovation in Mechanical Engineering and Advanced Materials Vol 7, No 2 (2025)
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/ijimeam.v7i2.31812

Abstract

Cars are a prevalent mode of transportation for both people and goods, with B-class hatchbacks being particularly popular in Indonesia. However, road traffic crashes remain a major concern, contributing millions of deaths annually, primarily due to human error. Autonomous vehicles offer a promising solution to mitigate these issues by reducing reliance on human control. In particular, Level 3 autonomous vehicles enhance road safety, enable independent mobility, reduce traffic congestion, and allow drivers to engage in non-driving tasks. This study proposes an autonomous vehicle model that employs a trajectory tracking approach using Model Predictive Control (MPC), a robust and widely adopted control strategy in autonomous systems. A three-degree-of-freedom (3-DOF) vehicle dynamic model was developed and analyzed through co-simulation using CarSim and Simulink to evaluate its performance during a double-lane change maneuver. The simulation results demonstrate that the vehicle accurately follows the reference trajectory and exhibits excellent dynamic performance. The roll angle remained consistently low, ranging between 0.024 and 0.026 radians—well below the rollover threshold of 0.14 radians—demonstrating strong roll stability. The slip angle varied between –0.013 and 0.0135 radians, nearly 12 times lower than the critical limit, indicating optimal traction and directional control. Lateral acceleration ranged from –3.59 m/s² to 3.41 m/s², and yaw rate remained within –7.78°/s to 7.25°/s, both well within safe operational bounds. These findings confirm that the proposed MPC-based control framework enables precise path tracking, robust stability, and reliable handling performance in dynamic driving scenarios.
Viability of R-290 Refrigerant as Residential AC Retrofit: Effect of Charge Mass Variations Aulia, Irham; Haftirman, Haftirman; Berman, Ega Taqwali
International Journal of Innovation in Mechanical Engineering and Advanced Materials Vol 7, No 2 (2025)
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/ijimeam.v7i2.30904

Abstract

The growing concerns over ozone depletion and global warming caused by refrigerants have led to the search for environmentally friendly alternatives. This study evaluates the impact of varying R-290 refrigerant charge masses on the performance of a wall-mounted residential air conditioner using the drop-in substitute method. A ¾ HP residential AC unit originally charged with 550 grams of R-22 refrigerant was retrofitted with R-290 and tested at charge masses of 140 grams, 165 grams, and 190 grams—approximately 25%, 30%, and 35% of the original R-22 charge, in accordance with the commonly applied “one-third rule.” The results showed that retrofitting with R-290 increased the Refrigeration Effect (RE) by up to 75%, Compression Work (Wc) by 68%, and Coefficient of Performance (COP) by up to 18%. The system with a 25% refrigerant charge was unable to reach the set temperature due to a 23% reduction in cooling capacity, while the 30% charge showed a 10% reduction. The 35% refrigerant mass retrofit proved the most suitable, achieving adequate cooling capacity, an 18% increase in COP, and a 14% reduction in power consumption. Additionally, the retrofit resulted in an indirect CO₂ emission reduction of 1.15 metric tons annually, highlighting the environmental and energy-saving advantages of using R-290. These findings provide empirical validation of the one-third rule for refrigerant mass variation in R-290 retrofits and offer valuable insights into optimizing performance and efficiency in residential AC units, with significant energy and environmental benefits.
Effect of Coconut Fiber and Coconut Shell Charcoal Composition on the Properties of PVC-Reinforced Composite Brake Pads Pandriana, Aap; Kurniawan, Kurniawan; Alva, Sagir
International Journal of Innovation in Mechanical Engineering and Advanced Materials Vol 7, No 1 (2025)
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/ijimeam.v7i1.31092

Abstract

The increasing concern over the health hazards associated with asbestos-based brake pads has driven the development of eco-friendly alternatives using natural fiber-reinforced composites. This study aims to fabricate and evaluate a sustainable brake pad material using coconut fiber as reinforcement, coconut shell charcoal powder as filler, and polyvinyl chloride (PVC) as the matrix. The composite was manufactured using the hot press method at a temperature of 180°C and a pressure of 7 MPa, conditions selected to optimize resin curing and interfacial bonding. A key focus of this research was to investigate the effect of solvent volume (cyclohexanone) used in the PVC resin preparation on the mechanical properties of the resulting composites. Three composite formulations were prepared with a constant composition of 70% coconut fiber, 5% charcoal powder, and 25% PVC resin, but with varying amounts of cyclohexanone solvent (200 mL, 150 mL, and 100 mL). The results revealed that reducing solvent content led to higher resin viscosity, which improved matrix–fiber bonding and increased both tensile strength and surface hardness. The optimal formulation—PVC Resin 3 with 100 mL of solvent—achieved a maximum tensile strength of 7.7 MPa and Shore D hardness of 72.2 HD, both of which meet the SAE J661-1997 standards for brake pad materials. This study confirms that solvent content is a critical factor influencing the density, strength, and durability of the composite. The findings support the feasibility of utilizing coconut-based agricultural waste in producing environmentally friendly brake pads with adequate mechanical performance.
Fuel Efficiency Evaluation of Automatic Motorcycles in Indonesia Using MATLAB-Based Clustering Fadhilla, Eky Nur; Monica, Zelvia; Adnan, Farrah Anis Fazliatul; Rhee, Jong Soo; Ginting, Dianta
International Journal of Innovation in Mechanical Engineering and Advanced Materials Vol 7, No 2 (2025)
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/ijimeam.v7i2.31577

Abstract

The continuous rise in fuel prices in Indonesia has made fuel efficiency a crucial factor for consumers when selecting vehicles, particularly motorcycles. Automatic scooters with engine capacities below 160 cc have become increasingly popular in urban areas due to their fuel-saving benefits. This study aims to analyze the influence of engine capacity, vehicle weight, and engine torque on the fuel consumption of automatic scooters with engine capacities ranging from 109 cc to 156.9 cc. The study also considers additional performance parameters, including average fuel consumption, power output, and Power-to-Weight Ratio (PWR). Using statistical analysis and MATLAB-based modeling, the data were classified into three distinct clusters. Cluster 1 comprises scooters with engine capacities between 109 and 125 cc; Cluster 2 includes those with capacities between 150 and 160 cc; and Cluster 3 represents scooters with unique component specifications. The results show that Cluster 2 records the highest average maximum power output at 11.47 kW and torque at 14.25 Nm, while Cluster 1 has the lowest at 6.1 kW and 9.64 Nm, respectively. In terms of weight, Cluster 3 is the heaviest, averaging 129.33 kg, while Cluster 1 is the lightest at 96.14 kg. Fuel efficiency is highest in Cluster 1 at 55.3 km/l and lowest in Cluster 3 at 38.67 km/l. Comparative analysis using MATLAB confirms that scooters with lower engine capacities and weights tend to be more fuel-efficient, whereas higher engine capacities lead to increased torque, power, weight, and fuel consumption. These findings can guide consumers in selecting motorcycles that align with their usage needs and assist manufacturers in developing more efficient and high-performing scooters tailored to diverse market segments.
Correlation Analysis of Battery Capacity, Range, and Charging Time in Electric Vehicles Using Pearson Correlation and MATLAB Regression Sanusi, Yasa; Pudjiwati, Sri; Tarigan, Kontan; Ginting, Dianta; Adnan, Farrah Anis Fazliatun; Timuda, Gerald Ensang; Darsono, Nono; Chollacoop, Nuwong; Khaerudini, Deni Shidqi
International Journal of Innovation in Mechanical Engineering and Advanced Materials Vol 7, No 3 (2025): Article in Press
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/ijimeam.v7i3.31800

Abstract

The increasing adoption of electric vehicles (EVs) reflects growing global awareness of climate change and air pollution challenges. As a sustainable alternative to conventional internal combustion vehicles, EVs produce zero tailpipe emissions and can significantly reduce carbon emissions—particularly when powered by renewable energy sources. However, one of the primary barriers to widespread EV adoption remains the high cost of battery components, which are essential to vehicle performance and energy storage. In Indonesia, two dominant battery types used in EVs are Lithium Ferro Phosphate (LFP) and Nickel Manganese Cobalt (NMC), each offering distinct advantages. LFP batteries are recognized for their thermal stability and longer life cycles, making them suitable for everyday use, while NMC batteries offer higher energy density and are preferred for performance-focused and long-distance applications. This study aims to evaluate the correlation between battery capacity, driving range, and charging time for LFP and NMC batteries using Pearson correlation and regression analysis through MATLAB simulation. The results indicate a strong and statistically significant correlation among the key parameters, with a Pearson coefficient of 0.576 for battery capacity and range, and an R-square value of 0.99 for the regression model, demonstrating high predictive accuracy. Furthermore, the analysis reveals that LFP batteries have a higher average energy efficiency of 7.53 km/kWh compared to 6.84 km/kWh for NMC batteries, indicating more consistent performance in energy usage. These findings offer valuable insights for optimizing battery selection in EV applications and contribute to strategic planning for the development of more efficient electric vehicle systems. The combination of statistical and simulation-based analysis provides a robust foundation for future research and policy-making in the field of electric mobility.
IoT-Based Continuity Analysis of Oil Pipeline Leakages Malau, Nadia Sri Melati; Drantantiyas, Nike Dwi Grevika; Gani, Ferizandi Qauzar
International Journal of Innovation in Mechanical Engineering and Advanced Materials Vol 7, No 2 (2025)
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/ijimeam.v7i2.33360

Abstract

Oil pipeline leaks pose a serious challenge due to their potential to cause significant economic losses and severe environmental damage. These incidents can disrupt industrial operations and endanger nearby ecosystems and communities. Early detection and real-time monitoring are therefore essential for minimizing adverse impacts and enabling rapid response. This research develops an Internet of Things (IoT)-based oil pipeline leak monitoring system using integrated multi-sensor data collected from field-simulated scenarios, providing a realistic evaluation of system performance under near-operational conditions. The system incorporates an ultrasonic sensor (HC-SR04) to measure fluid levels, a temperature sensor (DS18B20) to detect thermal anomalies, and a pressure sensor to identify internal pressure fluctuations. Sensor data are wirelessly transmitted via a NodeMCU ESP32 microcontroller to a web-based dashboard for remote monitoring, while local readings are simultaneously displayed on an LCD screen for on-site observation. The system was evaluated through controlled experiments simulating variations in pressure, temperature, and induced leak conditions. Results showed that the system achieved over 95% accuracy in leak detection, with a response time of less than 60 seconds upon leak initiation. The flow rate deviations under leak conditions exceeded the ±3% detection threshold, triggering real-time alerts. In non-leak scenarios, flow rates remained steady between 1.5–2.1 L/min, with tank level variations within 1 cm, confirming strong mass balance and stability. Overall, the developed IoT-based monitoring platform demonstrated high reliability and effectiveness in real-time leak detection, enabling faster response and significantly reducing potential environmental and operational impacts.
Enhancing The Formability of SS304 in ISF via Pre-Heating Treatment Strategies Shah, Muhammad Aqib Raza; Saragih, Agung Shamsuddin
International Journal of Innovation in Mechanical Engineering and Advanced Materials Vol 7, No 3 (2025): Article in Press
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/ijimeam.v7i3.33596

Abstract

The increasing demand for lightweight yet high-strength components in the automotive and aerospace industries has accelerated interest in Incremental Sheet Forming (ISF) as a flexible, dieless, and cost-effective manufacturing process, particularly for low-volume and customized production. Unlike conventional forming processes that rely on expensive dies, ISF offers greater geometric flexibility and rapid prototyping capabilities. However, its broader industrial adoption remains limited due to persistent challenges such as poor surface finish, springback, and restricted formability, especially when forming hard-to-deform materials like Stainless Steel Grade 304 (SS304). This study investigates the influence of customized heat treatment on the formability and deformation quality of SS304 sheets formed via ISF. Sheets were subjected to preheating at controlled temperatures ranging from room temperature to 700°C, followed by dieless forming using a CNC machining center equipped with a hemispherical tungsten carbide tool. Key process parameters, including a step size of 0.3 mm, a feed rate of 180 mm/min, and a tool speed of 500 mm/min, were maintained throughout forming. Comprehensive mechanical and microstructural analyses, including tensile testing, surface roughness evaluation, and optical metallography, were performed. Results revealed significant improvements in formability: ductility increased from 24.28% to 65%, and surface roughness (Ra) decreased from 9.7993 µm to 5.4809 µm after annealing at 700°C and tempering at 500°C. Microstructural analysis confirmed grain refinement and carbide dissolution, contributing to improved plastic flow and reduced surface defects. Integrating controlled heat treatment with ISF significantly enhances forming capabilities, surface quality, and geometric precision of SS304, making it a viable solution for manufacturing complex, high-performance components. These findings provide valuable insights for developing more efficient, defect-minimized, and adaptable forming strategies suitable for advanced manufacturing industries.

Page 10 of 11 | Total Record : 103