cover
Contact Name
Ivandini Tribidasari Anggraningrum
Contact Email
admin@iasssf.com
Phone
-
Journal Mail Official
eam@journal-iasssf.com
Editorial Address
Kukusan, Depok City, Indonesia 16425
Location
Kota depok,
Jawa barat
INDONESIA
Environmental and Materials
ISSN : -     EISSN : 30250277     DOI : -
The Environmental and Materials Journal (EAM) is a biannual journal published by the Institute for Advanced Social, Science, and Sustainable Future, Indonesia. This journal is dedicated to issue the most substantial and advanced of original and review articles related with the environmental issues and its related materials. Each submitted article will be carefully and thoroughly examined by a group of professional editors. The Earth’s changing climate and environmental issues need to be urgently addressed and it is a serious challenge for the scientific world. In this regards, the Environmental and Materials Journal seeks to publish high quality articles discussing the environmental problems and the related materials as well as the developed materials to solve the environmental problems. The subjects covered in this journal are: - Environmental issues and its management - Pollutant materials - Material sciences related to the environmental problems solving
Articles 35 Documents
Increasing energy density of vanadium redox flow batteries: A comprehensive review Ahmed, Sabeel; Abdullah, Iman; Krisnandi, Yuni Krisyuningsih
Environmental and Materials Vol. 3 No. 2: (December) 2025
Publisher : Institute for Advanced Science, Social, and Sustainable Future

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61511/eam.v3i2.2025.1828

Abstract

Background: Vanadium Redox Flow Batteries (VRFBs) represent a leading energy storage technology for renewable integration due to their long cycle life, high safety, and flexible scalability. However, their low energy density and high cost continue to limit widespread adoption. This study aims to synthesize and critically evaluate recent advances in enhancing VRFB performance through innovations in electrode materials, electrolyte chemistry, and membrane design. Methods: This study adopts a comprehensive literature review approach, analyzing theoretical and experimental research published in recent years. The review focuses on advancements in nanostructured electrode surfaces, optimized electrolyte formulations, and functional hybrid membranes. Theoretical insights from materials science and electrochemistry were integrated to establish the correlation between structure, performance, and efficiency. Findings: The reviewed studies reveal that nanostructured and heteroatom-doped electrodes enhance redox kinetics and minimize side reactions, while optimized electrolytes with mixed acids and stabilizers improve vanadium solubility and thermal stability. Hybrid polymer–inorganic membranes effectively reduce vanadium ion crossover and maintain high proton conductivity, thereby increasing coulombic and energy efficiencies. Collectively, these advancements improve power output, reduce self-discharge, and enhance long-term cycling performance, moving VRFBs closer to economic feasibility. Conclusion: Advancements in material design and system optimization are pivotal in overcoming the limitations of conventional VRFBs. Continued research on scalable, low-cost materials, electrolyte recycling, and hybrid integration will further promote sustainable energy storage. Novelty/Originality of this article: This review uniquely integrates material-level and system-level perspectives, offering a holistic understanding of how innovations across components collectively advance high-efficiency, cost-effective, and environmentally sustainable VRFB technology for next-generation renewable energy systems.
Recent advancements of carbazoles synthesis: Towards the green synthesis approach Atriardi, Shafrizal Rasyid
Environmental and Materials Vol. 3 No. 2: (December) 2025
Publisher : Institute for Advanced Science, Social, and Sustainable Future

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61511/eam.v3i2.2025.1979

Abstract

Background: The importance of carbazoles synthesis had been a motive to study deeper about the synthesis of carbazoles. For the development of carbazoles synthesis, a green synthesis approach became an important aspect that needed to be improved. The sustainable synthesis of carbazoles also plays a role in the reducing the hazardous impact to the environment. Methods: This carbazoles synthesis review was based on the generation of A or B ring in the carbazole molecules that analyzed by retrosynthetic analysis, updating several works from the past 10 years and highlighting the green synthesis approaches of carbazoles. Findings: Some of the green synthesis approaches were reported by the utilization of a green energy sources, mild solvents, and low catalysts loading that were used in the reaction. Non-toxic and non-hazardous material were also preferable to maintain the sustainability of this reaction. These currently developed approaches were inevitably encountered by several limitations, including lower yields and reactivities. Conclusion: Some of the reviews provides an improvement of the results, providing a broad substrate scopes with the moderate-to-good yield using a green synthesis approach. Novelty/Originality of this article: This review were focusing on the development of a green synthesis approach of carbazoles, which never reported in any review before.
Optimizing vanillin and phenol production from benzyl phenyl ether using CoMoO4/H-ZSM-5: A Box-Behnken design approach Khatrin, Irena; Amanullah, Duha Rushida; Wibowo, Rahmat; Howe, Russell Francis; Krisnandi, Yuni Krisyuningsih
Environmental and Materials Vol. 3 No. 2: (December) 2025
Publisher : Institute for Advanced Science, Social, and Sustainable Future

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61511/eam.v3i2.2025.2161

Abstract

Background: Lignin valorization into high-value chemicals is crucial for sustainable development. This study focused on optimizing the catalytic conversion of benzyl phenyl ether (BPE), a lignin model compound, to vanillin and phenolic compounds. Methods: Hierarchical H-ZSM-5 was synthesized via a dual-template method and subsequently modified by wet impregnation with bimetallic cobalt and molybdenum oxides (CoMoO4/H-ZSM-5). Catalyst properties were thoroughly characterized using various techniques, including XRD, FTIR, XRF, N2-physisorption, and SEM-EDS mapping. Reaction conditions, specifically Co:Mo ratio, temperature, and reaction time, were optimized using the Box-Behnken design (BBD), and product yields were quantified by High-Performance Liquid Chromatography (HPLC). Findings: Characterization confirmed successful catalyst synthesis, organic template removal, and bimetal oxide incorporation without significant structural damage. Catalytic tests demonstrated 100% BPE conversion. The highest experimental vanillin yield achieved was 54.69%. BBD analysis revealed that the interaction between Co:Mo ratio and temperature, as well as the quadratic effect of Co:Mo ratio, were the most influential factors impacting product yields. The optimal parameters for maximizing vanillin and phenolic yield were determined to be a Co:Mo ratio of 3:7, a temperature of 169 °C, and a reaction time of 31 minutes. While the phenolic model showed a reasonable fit (R² = 0.76), the vanillin model exhibited a lower fit (R² = 0.34) with significant lack-of-fit. Conclusion: This research provides crucial insights into the efficient production of high-value chemicals from BPE, offering a comprehensive optimization approach for the CoMoO4/H-ZSM-5 catalytic system. Novelty/Originality of this article: This study represents a novel contribution to lignin valorization.
One-pot catalytic conversion of glucose to 2,5-furandicarboxylic acid over NiO-modified ZSM-5 zeolites: Effects of reaction temperature and solvent ratio Pratama, Arnia Putri; Mulyadi, Andita Junia; Wibowo, Rahmat; Krisnandi, Yuni Krisyuningsih
Environmental and Materials Vol. 3 No. 2: (December) 2025
Publisher : Institute for Advanced Science, Social, and Sustainable Future

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61511/eam.v3i2.2025.2642

Abstract

Background: 2,5-Furandicarboxylic acid (FDCA) has gained increasing attention as a key bio-based intermediate for the production of polyethylene furanoate (PEF) and other sustainable polyesters, offering a viable alternative to fossil-derived monomers. Although FDCA is conventionally produced via oxidation of 5-hydroxymethylfurfural (HMF), direct one-pot conversion of glucose remains challenging due to the requirement for integrated catalytic functions and the strong influence of reaction conditions. Hierarchical zeolites modified with transition-metal oxides are promising for one-pot glucose-to-FDCA conversion; however, the effects of reaction temperature and solvent composition have not been systematically evaluated and are examined here using hierarchical ZSM-5, NiO-modified ZSM-5, and NiO catalysts. Methods: Hierarchical ZSM-5 was synthesized via a dual-template method and modified with NiO through an impregnation–spray technique to introduce redox-active sites. The catalysts were characterized using X-ray diffraction, Fourier-transform infrared spectroscopy, nitrogen physisorption, and Scanning Electron Microscope-Energy Dispersive X-Ray to establish correlations between structural, compositional, and textural properties and catalytic performance. Catalytic reactions were conducted at varying temperatures using a γ-valerolactone–water solvent system with different volume ratios. Findings: NiO-modified hierarchical ZSM-5 exhibited superior catalytic performance compared to the parent zeolite and NiO, achieving a maximum FDCA yield of 2.36% at 150 °C with an optimal γ-valerolactone–water ratio of 1:1. Higher FDCA yield over NiO-modified hierarchical ZSM-5 reflects the combined effects of hierarchical porosity, NiO species, reaction temperature, and solvent ratio. Conclusion: This study demonstrates that NiO-modified hierarchical ZSM-5 can promote one-pot glucose-to-FDCA conversion, with reaction temperature and solvent ratio identified as key parameters for performance optimization. Novelty/Originality of this article: This study provides a systematic assessment of the effects of reaction temperature and γ-valerolactone–water solvent ratio on FDCA formation over NiO-modified hierarchical ZSM-5 in a one-pot glucose conversion system, establishing catalyst and process design principles.
Copper foam modified electrodes for CO₂ electroreduction: A study on deposition potential effect and flow cell performance Riyanto, Hanzhola Gusman; Pasaribu, Lewita; Rachman, Fathur; Magdalena, Octaviany; Sanjaya, Afiten Rahmin
Environmental and Materials Vol. 3 No. 2: (December) 2025
Publisher : Institute for Advanced Science, Social, and Sustainable Future

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61511/eam.v3i2.2025.2649

Abstract

Background: The development of effective electrochemical conversion technologies is imperative due to the rising global CO2 emissions. A promising platform for CO2 reduction to formate is copper electrode, which can stabilize the carbon dioxide radical that is essential for CO2 conversion. Methods: In this work, Cu foam was electrodeposited in situ on a copper plate with sodium citrate acting as a capping agent (CuF@Cu), with variation of potential deposition were 3V and 5V. Findings: The foam structure of Cu in Cu electrode was confirmed with SEM and XRD measurements for both potential deposition variations. Furthermore, CO2 electroreduction was carried out in a flow cell under ideal conditions, which included aeration for 20 minutes, a flow rate of 75 mL min⁻¹, and an applied potential of −0.33 V vs. Ag/AgCl. For formic acid conversion, the Faradaic efficiency rose from 14.18% (Cu bare) to 26.73% (CuF@Cu 3V) which an 88.7% improvement over bare copper. Conclusion: The enhanced performance is attributed to the increased surface area and three-dimensional foam structure, which augments active sites for CO₂ activation. This work demonstrates that simple electrodeposition of copper foam is an effective strategy for improving electrochemical CO₂ reduction efficiency. Novelty/Originality of this article: These findings demonstrate that CuF@Cu makes using this straightforward electrodeposition technique a viable option for CO2 to formate conversion.

Page 4 of 4 | Total Record : 35