cover
Contact Name
Andri Agus Rahman
Contact Email
jurnal@rmpi.brin.go.id
Phone
+6282120080815
Journal Mail Official
eksplorium@brin.go.id
Editorial Address
Gd. 720, KST BJ Habibie, Kawasan Puspiptek Serpong, Tangerang Selatan 15314
Location
Kota bandung,
Jawa barat
INDONESIA
Eksplorium : Buletin Pusat Pengembangan Bahan Galian Nuklir
ISSN : 08541418     EISSN : 2503426X     DOI : https://doi.org/10.55981/eksplorium
EKSPLORIUM is published to deliver the results of studies, research and development in the field of nuclear geology. The manuscripts are the result of study, research and development of nuclear geology with scope: geology, exploration, mining, nuclear minerals processing, safety and environment, and development of nuclear technology for the welfare.
Articles 7 Documents
Search results for , issue "Vol. 40 No. 2 (2019): NOVEMBER 2019" : 7 Documents clear
Validitas dan Reliabilitas Data Estimasi Kadar Uranium Sektor Lembah Hitam, Kalan, Kalimantan Barat Muhammad, Adi Gunawan; Indrastomo, Frederikus Dian
EKSPLORIUM Vol. 40 No. 2 (2019): NOVEMBER 2019
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2019.40.2.5672

Abstract

Uranium (U) mineralisation in Lembah Hitam Sector in metasilt and schistossic metapellite rocks was assosiated with pyrite, pyrhotite, magnetite, molibdenite, tourmaline, and quartz minerals. The existence of U mineral was marked from its radiometric value reaching 15,000 c/s. The faster way to estimate U grade is using gamma-ray values calculation from gross-count gamma logging at borehole LH-01. The research is aimed to obtain the validity and reliablility of U grade estimating data. The logging estimation result then compared with geochemical analysis to obtain the correction factor (Fk). Geochemical analysis is using X-Ray Fluorescence (XRF) method on selected rock samples represent rock and mineralisastion depth interval inside the borehole. The result of uranium grade estimation using gross-count gamma ray calculation in depth 8.80–9.81 m is 456 eU while based on XRF analysis, the result is 177 ppm U. The correction factor (Fk), obtained from grade estimation at 8.80–9.81 m depth is 0.388. The value indicates that the validity and reliability estimation data is low. Ratio of U grade estimation depends on some factors, like gross-count gamma ray logging system; uranium disequilibrium, sampels size; and other radioactive elements. In order to increase the validity and reliability estimation data, XRF analysis samples should be added by considering the borhole diameter and depth interval.
Spektroskopi Reflektansi Sampel Tanah dan Batuan yang Mengandung Mineral Pembawa Unsur Tanah Jarang dan Radioaktif Hede, Arie Naftali Hawu; Firdaus, Muhammad Anugrah; Prianata, Yogi La Ode; Heriawan, Mohamad Nur; Syafrizal; Syaeful, Heri; Lubis, Ichwan Azwardi
EKSPLORIUM Vol. 40 No. 2 (2019): NOVEMBER 2019
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2019.40.2.5644

Abstract

Reflectance spectroscopy is one of the nondestructive methods of mineral identification and is one of the basic principles in the remote sensing analysis using optical sensors. This research aimed at applying reflectance spectroscopy at 350–2,500 nm wavelength range for samples containing rare earth elements (REE) and radioactive minerals. Samples were taken from several locations in South Bangka and Mamuju that had previously been identified as potential location of REE and radioactive-bearing minerals. Reflectance data shows that there are absorption characteristics for REE-bearing minerals; monazite, zircon, and xenotime minerals especially from tailings and tin ore concentrate for the samples from South Bangka. The key wavelengths are specifically in the visible-near infrared range (VNIR; 400–1300 nm). For the samples from Mamuju, which is known as radioactive mineral prospecting areas, spectral characteristics provide information that there are spectral signatures in the shortwave infrared range (1,300–2,500 nm). The results of major mineral interpretations include clay minerals, sulfates, NH4 species, and other minerals containing Al-OH. However, some samples at the VNIR wavelength identified as iron oxide/hydroxide minerals. It is hoped that these results can be useful for REE and radioactive exploration mapping using remote sensing methods.
Studi Fasa dan Sifat Termal Lantanum Oksida Berbasis Monasit Dewi, Sari Hasnah; Adi, Wisnu Ari; Suyanti
EKSPLORIUM Vol. 40 No. 2 (2019): NOVEMBER 2019
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2019.40.2.5646

Abstract

Rare earth elements (REE) in Indonesia have great potency, mainly from monazite mineral. Monazite is a combination of REE-U/Th-phosphate elements which is associated with tin deposit and radioactive elements. Through BATAN incorporated program, monazite mineral is processed to become more economically valuable materials. Lanthanum (La) is a metal element, part of REE group, which has excellent properties for pigment and electromagnetic absorber. The purpose of this study is to obtain information related to the effect of calcination in high temperature on the product of monazite’s REE hydroxide (RE(OH)3) processing pilot plant, specific on La2(C4O4)3 for Certified Reference Material (CRM) La­2O3 making. The weighed material is calcined on combustion boat by using a furnace at heating temperature of 1,000 OC and 1,300 OC. Thermal decomposition is analyzed by using Thermogravimetric analysis (TGA). Material phase formation is analyzed by using X-Ray Diffraction (XRD) method. XRD analysis shows the material in final phase has been transform to 28.76 % La2O3 and 71.24 % La(OH)3.
Studi Mikrotremor dengan Metode Horizontal to Vertical Spectral Ratio (HVSR) di Tapak RDE, Serpong Iswanto, Eko Rudi; Indrawati, Yuni; Riyanto, Theo Alvin
EKSPLORIUM Vol. 40 No. 2 (2019): NOVEMBER 2019
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2019.40.2.5489

Abstract

Natural disaster like earthquake can cause damage to the site and the infrastructure including nuclear reactor facilities. This phenomenon needs comprehensively understood through its dynamic characteristics historical records of the site. The use of Horizontal to Vertical Spectral Ratio (HVSR) method has been widely used for subsurface investigation since last decade. The aimed of the research is to obtain local geological and subsurface dynamic characetristics. This research is applying the use of HVSR method for Experimental Power Reactor (RDE) in Serpong. The measurements are in 15 locations, and then the data is processed by using Geopsy software. The analysis result shows that the RDE site has dominant frequncy values between 3.06 Hz–23.271 Hz and amplification factor 1.84–6.37. The northeast and southeast areas of the site have higher seismic vulnerability index than in other area. Therefore, the selection for reactor bulding location in the southwest area is proper because it has lower amplification factor, sedimen thickness, and seismic vulnerability index.
Aktivitas NORM pada Sedimen Dasar di Perairan PLTU Tanjung Jati Jepara dan Kaitannya dengan Ukuran Butir Sedimen serta TOC Alviandini, Navila Bidasari; Muslim; Prihatiningsih, Wahyu Retno; Wulandari, Sri Yulina
EKSPLORIUM Vol. 40 No. 2 (2019): NOVEMBER 2019
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2019.40.2.5662

Abstract

NORM (Naturally Occurring Radioactive Material) is a radionuclide element which naturally exists in the earth and its content can increased with the presence of industrial activities, such as the PLTU. The PLTU activities produce fly ash and bottom ash which will be carried away by the wind and then fall in the waters and settle on the bottom sediments of the waters. This study was aimed to determine the activity of NORM in bottom sediments related activities PLTU Tanjung Jati Jepara and its relationship with grain size and TOC (Total Organic Carbon). Sampling was conducted by purposive sampling method. NORM activity concentration measurements performed using gamma ray spectrometry HPGe detector, in Marine Radioecology Laboratory PTKMR-BATAN. NORM activity concentration detected is 40K ranged 442.75 to 818.40 Bq.Kg-1, 232Th ranged 99.19 to 212.34 Bq.Kg-1 and 226Ra ranged 42.42 to 77.77 Bq.Kg-1. NORM activity shows the relationship with sediment texture, but does not show a relationship with the composition of Total Organic Carbon (TOC).
Pengendapan Torium (Th) dari Monasit Bangka Setelah Proses Solvent Impregnated Resin (SIR) Prassanti, Riesna; Ani, Budi Yuli; Sumiarti; Dewita, Erlan
EKSPLORIUM Vol. 40 No. 2 (2019): NOVEMBER 2019
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2019.40.2.5648

Abstract

Alkaline processing of Bangka monazite is carried out through stages like decomposition; partial dissolution pH 3.7; partial precipitation pH 6.3; and total precipitation pH 9.8. These procesess produce sodium phosphate, Rare Earth (RE) Hydroxide, uranium (U), and thorium (Th). On decomposition procsess, 99 % of sodium phosphate had been recovered and RE Hydroxide was separated from U and Th with 85% recovery. Meanwhile, the U and Th products were still mixed so that needs to separate. Purification of Th from U in monazite had been carried out by using Solvent Impregnated Resin (SIR) method and continued by elution after SIR. The result is that Th is still in the liquid phase as thorium nitrate [Th(NO3)2] solution so it needs to be precipitated as thorium hydroxide [Th(OH)2] to facilitate the next process. Precipitation of Th after SIR process is conducted with the aim to obtain optimum precipitation condition. The supporting resin used is amberlite XAD-16 with impregnated tributyl phosphate (TBP) extractant, dilute nitric acid (HNO3) as elution reagent, and ammonium hydroxide (NH4OH) as precipitation reagent. The observed parameters are the effect of pH and precipitation time on Th recovery. The results show that the optimum precipitation conditions of Th from monazite after SIR process is on pH 1.2 and 60 minutes time, resulting recovery of 84.74 % Th, 3.26 % U, 34,74 % RE, and 8.52 % PO4.
Efisiensi Penurunan Kandungan Uranium dalam Limbah Cair Pengolahan Monasit Menggunakan Resin Penukar Kation Tulsion T-40 Na Walayudara, Inda Robayani; Laksmana, Roza Indra; Marisi, Dani Poltak; Amalia, Septyana Nur
EKSPLORIUM Vol. 40 No. 2 (2019): NOVEMBER 2019
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2019.40.2.5627

Abstract

Waste-water is one of the production process that contains several dangerous mixtures or chemical compositions. One of them is waste-water from monazite processing which is containing radioactive element like uranium (U). Waste-water with radioactive content, mainly uranium, became a hazardeous content if it is released to the environment because of its active nuclide content that effect the environment and community health. Therefore, it is necessary to treat waste-water from monasite processing. The method used is ion exchange process with a cation resin, namely Tulsion T-40 Na, which can reduce uranium content and other cations in waste-water at low concentration. Ion exchanging is conducted through stirring process with resin weight and contact time variations. Measurements on uranium content are carried out using the UV-Vis Spectrophotometer, while measurements on pH and TDS values in waste-water are conducted to determine the characteristics of the waste. The results showed that optimum condition of the ion exchange process at 1.5 g resin weight with 300 minutes contact time is resulting a reduction on uranium content as much as 83.40 %.

Page 1 of 1 | Total Record : 7