cover
Contact Name
Utama Alan Deta
Contact Email
utamadeta@unesa.ac.id
Phone
+628993751753
Journal Mail Official
jpfa@unesa.ac.id
Editorial Address
Fakultas Matematika dan Ilmu Pengetaahuan Alam Jl. Ketintang, Gd C3 Lt 1, Surabaya 60231
Location
Kota surabaya,
Jawa timur
INDONESIA
Jurnal Penelitian Fisika dan Aplikasinya (JPFA)
ISSN : 20879946     EISSN : 24771775     DOI : https://doi.org/10.26740/jpfa
Core Subject : Science, Education,
Jurnal Penelitian Fisika dan Aplikasinya (JPFA) is available for free (open access) to all readers. The articles in JPFA include developments and researches in Physics Education, Classical Physics, and Modern Physics (theoretical studies, experiments, and its applications), including: Physics Education (Innovation of Physics Learning, Assessment and Evaluation in Physics, Media of Physics, Conception and Misconceptions in Physics, hysics Philosophy anPd Curriculum, and Psychology in Physics Education); Instrumentation Physics and Measurement (Sensor System, Control System, Biomedical Engineering, Nuclear Instrumentation); Materials Science (Synthesis and Characteristic Techniques, Advanced Materials, Low Temperature Physics, and Exotic Material); Theoretical and Computational Physics (High Energy Physics, Gravitation and Cosmology, Astrophysics, Nuclear and Particle Phenomenology, and Computational and Non-Linear Physics); and Earth Sciences (Geophysics and Astronomy).
Articles 440 Documents
Front Cover JPFA Vol 9 No 2 December 2019 Editor JPFA
Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol. 9 No. 2 (2019)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jpfa.v9n2.pi

Abstract

Back Cover JPFA Vol 9 No 2 December 2019 Editor JPFA
Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol. 9 No. 2 (2019)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jpfa.v9n2.pix

Abstract

The Existence of Fourier Coefficients and Periodic Multiplicity Based on Initial Values and One-Dimensional Wave Limits Requirements Adi Jufriansah; Azmi Khusnani; Arief Hermanto; Mohammad Toifur; Erwin Prasetyo
Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol. 10 No. 2 (2020)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jpfa.v10n2.p146-157

Abstract

Physical systems in partial differential equations can be interpreted in a visual form using a wave simulation. In particular, the interpretation of the differential equations used is in the nonlinear hyperbolic model, but in its completion, there are some limitations to the stability requirements found. The aim of this study is to investigate the analytical and numerical analysis of a wave equation with a similar unit and fractal intervals using the Fourier coefficient. The method in this research is to use the analytical solution approach, the spectral method, and the finite difference method. The hyperbolic wave equation's analytical solution approach, illustrated in the Fourier analysis, uses a pulse triangle. The spectral method minimizes errors when there is the addition of the same sample grid points or the periodic domain's expansion with a trigonometric basis. Meanwhile, different ways offer a more efficient solution. Based on the research results, the information obtained is that the Fourier analysis illustrates the pulse triangle use to solve the solution. These results are also suitable for adding sample points to the same spectra. Fourier analysis requires a relatively long time to solve one pulse triangle graph to need another solution, namely the finite difference method. However, its use is still limited in terms of stability when faced with more complex problems.
The Effectivenes of Modeling Instruction Learning on Students Conceptual Understanding of Rotational Dynamic Sherly Verlinda; Sutopo Sutopo; Eny Latifah
Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol. 10 No. 2 (2020)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jpfa.v10n2.p158-172

Abstract

Rotational Dynamics is one of the physics topics which is quite difficult for students. Several previous studies showed students difficulties on this topic, one of which is the aspect of students conceptual understanding. Modeling instruction is the effective approach to improve students understanding. This model is in line with constructivist theory and cognitive model theory. This research aimed to examine the effectiveness of modeling instruction that we developed to improve students' conceptual understanding of rigid body mechanics, where the knowledge of particle mechanics serve as anchor or bridging to develop model of rigid body. This research used mixed method with embedded experimental design. It used one group pretest-posttest design and involved 65 students of a high school in Malang as the subject. Data were gathered using test consisting of 17 multiple-choice items with explanation. The students scores were analyzed quantitatively using t-test and N-gain to measure the improvement of students understanding, while the students' reasons were analyzed qualitatively. The results showed the average students score increased from 1.62 to 9.92 with N-gain of 0.54 (in upper medium category). We concluded that the modeling instruction was effective to improve students conceptual understanding.
Design of low-cost and simple reconstruction method for Three Dimensional Electrical Impedance Tomography (3D-EIT) Imaging Endarko Endarko; Ari Bangkit Sanjaya Umbu
Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol. 10 No. 2 (2020)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jpfa.v10n2.p125-136

Abstract

Electrical impedance tomography is a non-invasive imaging modality that uses the electrical conductivity distribution to reconstruct images based on potential measurements from the object's surface. The proposed study was to design and fabricate a low-cost and simple reconstruction method for 3D electrical impedance tomography imaging. In this study, we have been successfully developed 3 Dimensional Electrical Impedance Tomography (3D-EIT) system using 16 copper electrodes (Cu) to detect and reconstruct the presence of objects in the Phantom. 3D-EIT was developed using Phantom as a test object with PVC pipe material, with an inner diameter of 7.2 cm and a height of 5.4 cm. Electrodes were arranged in two rings, with each ring having eight electrodes arranged in a planar line. Furthermore, the Gauss-Newton algorithm and Laplace prior regularization were used to image reconstruction of objects inside the Phantom using voltage measurement produced from sequential pairs of neighboring electrodes. The voltage is obtained from the injection of a constant current of 1 mA at 20 kHz into the system's electrode pairs. The objects used in this research are PVC pipe, solid aluminum, PVC pipes filled with wax glue, and copper trusses. The results obtained show that the reconstruction results can provide information about the position, the electrical properties, and the shape of real objects. Finally, the system can detect the location, height, and electrical properties of objects for all variations of angle and height variations.
Identification of the Grindulu Fault in Pacitan, East Java using Magnetic Method Latifatul Cholifah; Nurul Mufidah; Eden Lazuardi; Bagus Jaya Santosa; Sungkono Sungkono; Arif Haryono
Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol. 10 No. 1 (2020)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jpfa.v10n1.p22-33

Abstract

Magnetic method in geophysical surveys is common for its non-destructive use of sub-surface structure delineation. In this study, ground-based measurements of magnetic intensity were performed using a set of instruments in some regions of Pacitan, a city in the southern area of East Java province. Based on these measurements, data acquisition was used to identify the Grindulu faulting zone in the region of interest, potentially vulnerable to geohazards. The data were first corrected using the IGRF and diurnal corrections. A filtering technique of upward continuation at a height of 900 m was then applied to separate local anomalies from regional ones as the targeted sources in the present case. These separate anomalies and their corresponding reductions to the poles as further filtering processes were analyzed for predicting the location and direction of the fault. The results, extracted from data analysis and interpretation, show that the main path of the Grindulu is directed along the NE-SW fault line or N60oE. The resulting anomalies also reflect that the Grindulu is a normal fault with surrounding minor faults lying across the Grindulu, calling for increased awareness of vulnerability in the city to seismic threats.
ORNE Learning Model to Improve Problem-Solving Skills of Physics Bachelor Candidates: An Alternative Learning in the Covid-19 Pandemic Binar Kurnia Prahani; Ali Hasbi Ramadani; Diah Hari Kusumawati; Nadi Suprapto; Madlazim Madlazim; Budi Jatmiko; Zainul Arifin Imam Supardi; Husni Mubarok; Shabrina Safitri; Utama Alan Deta
Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol. 10 No. 1 (2020)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jpfa.v10n1.p71-80

Abstract

In this industrial revolution 4.0 era, professional science, technology, engineering, and mathematics (STEM) bachelor must have various skills. One of which is problem-solving skills. The development of problem-solving skills (PSS) is very important in higher education. Students must have PSS that must be improved to become excellent graduates, including physics bachelor candidates. Many physics bachelor candidates lack problem-solving skills. This problem is the basis for developing innovative learning models based online that, by design, can improve the problem-solving skills of physics bachelor candidates in the COVID-19 pandemic. This research aims to analyze the effectiveness ORNE learning model in improving the problem-solving skills of physics bachelor candidates as an alternative to online learning in the COVID-19 pandemic. The research design used a true-experiment with a non-equivalent control group design with 58 physics bachelor candidates. Data collected using the problem-solving skills test and then analyzed using the Paired Sample Test, Effect Size, N-gain, and Independent Sample Test. The results showed that the ORNE learning model proved effective in improving physics bachelor candidates' problem-solving skills. This research implies that the ORNE learning model can improve physics bachelor candidates' problem-solving skills as an alternative to online learning in the COVID-19 pandemic.
Development of Non-Invasive Blood Glucose Level Monitoring System using Phone as a Patient Data Storage Riska Ekawita; Ahmad Azmi Nasution; Elfi Yuliza; Nursakinah Suardi; Suwarsono Suwarsono
Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol. 10 No. 2 (2020)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jpfa.v10n2.p103-113

Abstract

Glucose levels that accumulate in the blood can cause other organ disorders and even cause death. To prevent such occurrence, continuous and regular glucose measuring and monitoring is required for diabetes mellitus (DM) patients. Glucose measurement for DM patients are generally performed several times a day, so be required easy, harmless method of measuring the DM patients, and monitoring data are well recorded. Thus in this research, an android non-invasive glucose level system with wireless communication and automatic data storage on the phones memory was developed. The study was begun with the built of electronic and software systems as the central part of the measuring system. The electronic section consists of laser and light sensors that respond to a change in blood glucose (BG) levels, the microcontroller that controlled all of the measuring processes, and Bluetooth modules as transceiver on data communication of the android. The software section is built using an App Inventor developed by the Massachusetts Institute of Technology (MIT) to display and store data measurement on the mobile phone. The calibration process of light sensors is done with the standard tool and at last, the wireless communication systems testing and BG levels measurement. The result shows that 94 mg/dl of BG levels by standard tools equals 2.86 volts of voltage measured by the design system. The higher the BG level, the lower the voltage be. Increase the BG level causes the resistance between the transmitter and the receiver to raise and the voltage becomes low.
Introduction, Author Guidlines, and Table of Contents JPFA Vol 10 No 1 June 2020 Editor JPFA
Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol. 10 No. 1 (2020)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jpfa.v10n1.pi-vi

Abstract

Acknowledgment JPFA Vol 10 No 1 June 2020 Editor JPFA
Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol. 10 No. 1 (2020)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jpfa.v10n1.pvii-viii

Abstract