Articles
210 Documents
SIFAT KEPRIMAAN MODUL SEDERHANA CHEN UNTUK GRAF ????∞
Risnawita Risnawita;
Irawati Irawati;
Intan Muchtadi Alamsyah
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 12, No 2 (2018): JURNAL EPSILON VOLUME 12 NOMOR 2
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (222.299 KB)
|
DOI: 10.20527/epsilon.v12i2.314
Let ???????? be a field, ???????? is a directed graph. Let ????????~ is a directed line graph. Suppose that ????????[????????] is a class of Chen simple module for the Leavitt path algebra (???????????????? (????????)), with [p] being equivalent classes containing an infinite path. An infinite path p is an infinite sequence from the sides of a graph. In this paper it will be shown that ????????[????????]is not a prime module of the Leavitt path algebra for graph ????????∞ .Keywords : Leavitt path algebra, Graph ????????~, Chen simple modules, Prime modules
BIPLOT ANALYSIS ON PRINCIPAL COMPONENTS OF HUMAN DEVELOPMENT IN ASEAN COUNTRIES
Deva A. Nurul Huda;
Pardomuan Robinson Sihombing
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol. 15(1), 2021
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (323.437 KB)
|
DOI: 10.20527/epsilon.v15i1.3673
The Human Development Index (HDI) has been the key indicator for assessing the development of a country throughout the years. It is conducted from four indicators that represent the health dimension, the education dimension, and the standard of living dimension. In ASEAN countries, the HDI tends to rise from year to year, with some countries can achieve the very high and high level of human development, while the others are still in the medium level. The aim of this study is to find the information about relative positions, characteristic similarities between ASEAN countries and the diversity of the components that construct the human development index. The Principal Component Analysis Biplot used divides the ten countries into four groups. Group 1 are the countries with the high scores especially in GNI per capita, group 2 are the ones with high scores especially in the mean years of schooling, group 3 have low scores especially in GNI per capita, and group 4 have low scores especially in the mean years of schooling
MODEL PERSEDIAAN YANG MENGALAMI KERUSAKAN DAN PARSIAL BACKLOGGING PADA KEKURANGAN DENGAN TINGKAT PERMINTAAN YANG BERVARIASI
Kasim Alfarisi;
Pardi Affandi;
Aprida Siska Lestia
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 14, No 2 (2020): JURNAL EPSILON VOLUME 14 NOMOR 2
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (251.627 KB)
|
DOI: 10.20527/epsilon.v14i2.2960
Persediaan merupakan cadangan barang yang dikelola oleh setiap perusahaan untuk memenuhi permintaan pelanggan. Parsial backlogging terjadi saat persediaan mengalami kekosongan namun permintaan masih ada, akibatnya hanya sebagian pelanggan yang bersedia menunggu sampai barang tersebut tersedia. Permintaan pelanggan terhadap barang cukup bervariasi karena dipengaruhi oleh faktor cuaca, tempat lokasi dan lain-lain. Tujuan dari penelitian ini membentuk model persediaan berdasarkan asumsi permasalahan yang mengalami kerusakan dan parsial backlogging. Pada model persediaan akan berlangsung selama satu periode yang terbagi menjadi beberapa siklus. Model ini hanya berlaku untuk satu jenis barang dan berlaku untuk perusahaan barang jadi. Selain itu, model ini juga memperhitungkan banyak siklus yang digunakan pada contoh soal. Hasil dari penelitian ini berupa persamaan untuk menentukan waktu pengisian kembali persediaan dan total keuntungan yang maksimal. Total keuntungan yang maksimal diperoleh dari selisih jumlah hasil penjualan dengan total biaya dengan menggunakan waktu pengisian barang persediaan yang tepat. Keutamaan model ini selain berlaku dalam jangka waktu yang panjang juga dapat memaksimalkan keuntungan dengan memperhitungkan titik optimal pengisian barang kembali.
ANTI FUZZY SUBSEMIRING
Saman Abdurrahman;
Cendikia Hira;
Alya Hanifah Arif
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol. 16(1), 2022
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (354.077 KB)
|
DOI: 10.20527/epsilon.v16i1.5443
When the first operation’s inverse axiom is deleted from the ring, an algebraic structure, the semiring, is generated. Subsemiring is one of the subjects covered in semiring. The concepts of fuzzy subsemiring, anti subsemiring fuzzy semiring, and complement are introduced in this paper. In addition, the anti-subsemiring fuzzy semiring, a wedge, or a combination of two or more fuzzy anti-subsemiring associated with a non-empty subset of the semiring whose membership criteria are defined by the membership value of the zero elements will be discussed.
BEBERAPA KOMBINASI RUNGE-KUTTA UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL WAKTU TUNDA
Qudsi Rahma;
Agus Dahlia
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 13, No 1 (2019): JURNAL EPSILON VOLUME 13 NOMOR 1
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (1217.466 KB)
|
DOI: 10.20527/epsilon.v13i1.3191
Delay Differential Equation (DDE) have been applied to many area. While, we rarely get the analytic solutions of DDE. Many researchers have found many methods to find it for instance Runge-Kutta Method. The purpose of this paper is to accumulate the combinations of Runge-Kutta method which is used to find the solutions of DDE.
INTERIOR IDEAL FUZZY SEMIRING
Saman Abdurrahman
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol. 15(2), 2021
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (265.901 KB)
|
DOI: 10.20527/epsilon.v15i2.4894
Semiring is one of the ring extensions, which eliminates the inverse axiom in the first operation. One of the topics on the semiring is the ideal interior. This study introduces the concept of the ideal interior semiring and the ideal interior fuzzy semiring. Further, it examined the properties of the ideal fuzzy semiring interior and the nature of the existence of the ideal interior semiring if the ideal fuzzy interior is given.
STRUKTUR HEMIRING
Noviliani Noviliani;
Saman Abdurrahman;
Na'imah Hijriati
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol. 15(1), 2021
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (362.816 KB)
|
DOI: 10.20527/epsilon.v15i1.2855
Hemiring is a non-empty set which is equipped with the addition operation " " and the multiplication operation " " and satisfied four conditions, namely: is a commutative monoid with an identity element of , is semigroup, satisfied distributive properties the multiplication over addition on both sides, and satisfied for each . There are several types of hemiring such as idempotent hemiring, zerosumfree hemiring, simple hemiring and others. In this paper, it discusses the sufficient and necessary conditions of a hemiring that is said to be commutative and said to be simple, prove the characteristics of the operation in zerosumfree hemiring, idempotent hemiring, and simple hemiring.
PEMBAGI NOL PADA MATRIKS ATAS RING KOMUTATIF
Nurhayani Mega;
Thresye Thresye;
Nurul Huda
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 13, No 1 (2019): JURNAL EPSILON VOLUME 13 NOMOR 1
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (931.004 KB)
|
DOI: 10.20527/epsilon.v13i1.3195
Matriks atas ring komutatif adalah matriks yang entri-entrinya dibangun dari ring komutatif. Himpunan matriks atas ring komutatif membentuk struktur ring terhadap operasi penjumlahan matriks dan operasi pergandaan matriks. Struktur yang terbentuk atas matriks yang entri-entri dari ring komutatif atau dapat disimbolkan ????????×????(????) merupakan ring. Selanjutnya (????????????????,+,∗) dikatakan ring dengan pembagi nol jika terdapat dua elemen matriks yang tidak sama dengan nol akan tetapi ketika diberikan operasi pergandaan maka bernilai nol. Tulisan ini membahas sifat-sifat pembagi nol pada matriks atas ring komutatif, yaitu jika ????∈????????×????(????), dengan ???? adalah ring komutatif, maka matriks ???? merupakan pembagi nol kiri dalam ????∈????????×????(????) jika dan hanya jika matriks ???? merupakan pembagi nol kanan dalam ????????×????(????).
SOLUSI DARI PERSAMAAN DIFERENSIAL BIASA LINIER ORDE 2 DALAM BENTUK POLINOMIAL TAYLOR
Herlyn Basrina;
Yuni Yulida;
Thresye Thresye
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 10, No 2 (2016): JURNAL EPSILON VOLUME 10 NOMOR 2
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (201.79 KB)
|
DOI: 10.20527/epsilon.v10i2.35
Persamaan diferensial biasa (PDB) adalah persamaan diferensial yang hanya mengandung turunan biasa dari satu atau lebih variabel tak bebas terhadap satu variabel bebas. Persamaan diferensial biasa dapat dikatakan linier jika tidak ada perkalian antara variabel-variabel tak bebas dan turunannya. Solusi persamaan diferensial dapat berupa solusi pendekatan. Salah satu metode untuk menentukan solusi pendekatan dari persamaan diferensial linier adalah metode Taylor-Matrix. Tujuan dari penelitian ini adalah untuk menentukan solusi dari persamaan diferensial biasa linier orde 2 dalam bentuk polinomial Taylor. Penelitian ini dilakukan dengan cara studi literatur dari berbagai sumber, baik buku, artikel maupun jurnal. Hasil dari penelitian ini menunjukkan bahwa solusi dari persamaan diferensial biasa linier orde 2 berbentuk polinomial Taylor. Solusi tersebut diperoleh dengan mengasumsikan setiap fungsi pada persamaan diferensial biasa linier orde 2 dapat dinyatakan dalam bentuk polinomial Taylor, kemudian persamaan diferensial tersebut berserta kondisi yang diberikan diubah dalam bentuk matriks. Setelah itu matriks tersebut dibentuk menjadi matriks diperbesar dan diselesaikan.Kata kunci : Persamaan Diferensial Biasa Linier, Polinomial Taylor.
PELUANG TRANSISI PADA PENENTUAN PREMI TUNGGAL BERSIH ASURANSI JIWA BERJANGKA
Muhammad Meidy Maulana;
Dewi Sri Susanti;
Aprida Siska Lestia
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol. 16(1), 2022
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (366.124 KB)
|
DOI: 10.20527/epsilon.v16i1.5174
A life insurance contract contains the amount of funds that must be paid by insured as a responsibility for a received compensation. There funds are called as premium. Payment of the premium which paid with one payment at the beginning of the contract time called as net single premium. One factor that influenced the calculation of life insurance premiums is a life probability. In general, a life probability constructed by the assumption that death only involves two conditions, life and death. Yet, there are another condition for the insured that also affect a person’s death condition which is sick. The objecktive of this research is to determine net single premium of term life insurance formula using transition probability as a life probability. The first will constructed transition from three condition which are health, sick, and death as stochastic process. Transition probability will be determined by solving Chapman Kolmogorov system differential equation. Then the probability transition that determined will be used for calculate net single premium from term life insurance. Net single premium will be determined by using expectation value of present value of benefit random variables. From this research get formula of net single premium of term life insurance contains discount function, transition probability, and force of mortality of someone.