cover
Contact Name
Yuni Yulida
Contact Email
y_yulida@ulm.ac.id
Phone
+6281348054202
Journal Mail Official
epsilon@ulm.ac.id
Editorial Address
Mathematics Department, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University. Jl. A. Yani KM.35.8 Banjarbaru, Kalimantan Selatan
Location
Kota banjarmasin,
Kalimantan selatan
INDONESIA
Epsilon: Jurnal Matematika Murni dan Terapan
ISSN : 19784422     EISSN : 26567660     DOI : http://dx.doi.org/10.20527
Jurnal Matematika Murni dan Terapan Epsilon is a mathematics journal which is devoted to research articles from all fields of pure and applied mathematics including 1. Mathematical Analysis 2. Applied Mathematics 3. Algebra 4. Statistics 5. Computational Mathematics
Articles 210 Documents
PRINCIPAL COMPONENT ANALYSIS BIPLOT GLOBAL COMPETITIVENESS INDEX ASEAN COUNTRIES Lina Sari; Pardomuan Robinson Sihombing
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 14, No 2 (2020): JURNAL EPSILON VOLUME 14 NOMOR 2
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (367.537 KB) | DOI: 10.20527/epsilon.v14i2.2967

Abstract

ASEAN's global competitiveness requires institutional and ASEAN countries appear to be a formidable economic actors in protecting the economic interests and at the same time having an open economic system that indicates the readiness of ASEAN to compete with the economic strength of the entire region in the world. In this case the measurement of global competitiveness factors become important aspects of state enterprises in the face of global competition. This study was conducted to determine how competitive the ASEAN countries with Biplot method of Principal Component Analysis. Results obtained from this study is the ASEAN countries have different advantages in each of the variables related to the global competitiveness index. In addition, the diversity of which can be explained more than 70% which is 90.69% which means that Principal Component Analysis Biplot describes well the overall total
ANALISIS REGRESI LINEAR BERGANDA DENGAN SATU VARIABEL BONEKA (DUMMY VARIABLE) Tanti Krisnawardhani; Nur Salam; Dewi Anggraini
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 4, No 2 (2010): JURNAL EPSILON VOLUME 4 NOMOR 2
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (129.582 KB) | DOI: 10.20527/epsilon.v4i2.60

Abstract

To accommodate the existence of free qualitative variables into the regression model then used variable dummy (variable dummy) in the regression equation that can be written as follows: i i i i Y     X   D  0 1 2. This study aims to determine parameter estimation of the multiple linear regression model with one variable the puppet uses the least squares method, determining the model match test statistic using the method likelihood ratio and apply the model in the case example. The results showed that the parameter estimation of the regression model is: β  X'X (X'Y) 1  . Application of usage this regression model is in the example about the calculation of tuition fees Y based on the average Scholastic Aptitude Test (X nilai) and university type D so obtained the following model: Y  7263,56 19,52X  8732,418D 
NUMERICAL SOLUTION OF ABSORBING BOUNDARY CONDITIONS ON TWO DIMENSIONAL ACOUSTIC WAVE Mohammad Mahfuzh Shiddiq
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 7, No 1 (2013): JURNAL EPSILON VOLUME 7 NOMOR 1
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (412.937 KB) | DOI: 10.20527/epsilon.v7i1.93

Abstract

In this paper will be determined numerical solution of two-dimensionalacoustic wave equation with absorbing boundary conditions that obtained at Siddiq [9].Method used is determine nite dierence equation in two-dimensional acoustic wavepropagation problems satised absorbing boundary conditions.
ACTUARIAL PRESENT VALUE (APV) ANUITAS KONTINU DENGAN STATUS MULTIPLE LIFE Aprida Siska Lestia
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 13, No 1 (2019): JURNAL EPSILON VOLUME 13 NOMOR 1
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (712.671 KB) | DOI: 10.20527/epsilon.v13i1.3193

Abstract

Rangkaian pembayaran yang dikaitkan dengan hidup matinya seseorang di mana pembayaran akan terhenti seketika setelah terjadinya kematian dikenal dengan istilah anuitas hidup kontinu. Istilah kontinu di sini didasari kenyataan bahwa usia manusia merupakan elemen bilangan real, dimana kematian sebagai risiko utama dapat terjadi kapan saja, sehingga pemodelan matematis akan dilakukan dengan pendekatan stokastik. Jenis anuitas yang seperti ini dalam Asuransi Jiwa digunakan dalam perhitungan premi yang dibebankan kepada pemegang polis (tertanggung). Jika anuitas tersebut dibebankan kepada lebih dari satu orang, maka dikatakan bahwa anuitas hidup dilakukan dengan status multiple life. Dalam prakteknya, terdapat dua kemungkinan penghentian rangkaian pembayaran pada status multiple life, yang dikenal dengan joint life dan last survivor. Penentuan actuarial present value (APV) anuitas (seumur hidup dan berjangka ????-tahun) dilakukan menggunakan peluang multiple life yang dibangun dengan menggunakan distribusi sisa usia bagi sekelompok orang. Dari penelitian ini diperoleh formula penentuan APV yang merupakan nilai ekspektasi dari variabel acak nilai tunai anuitas.
BILANGAN INVERS DOMINASI TOTAL PADA GRAF BUNGA DAN GRAF TRAMPOLIN Febby Desy Lia; Nilamsari Kusumastuti; Fransiskus Fran
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol. 16(1), 2022
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (498.152 KB) | DOI: 10.20527/epsilon.v16i1.5160

Abstract

Given a simple, finite, undirected and contains no isolated vertices graph , with  is the set of vertices in  and  is the set of edges in . The set  is called the dominating set in  if for every vertex of  is adjacent to at least one vertex in . The set  is called the total dominating set in graph  if for every vertex in  is adjacent to at least one vertices in . If  is the total domination set with minimum cardinality of the graph  and  contains another total domination set, for example , then  is called the inverse set of total domination respect to . The minimum cardinality of an inverse set of total domination is called the inverse of total domination number which is denoted by .The set of domination and total domination is not singular. A graph that has a total domination set does not necessarily have a inverse total domination set. In this study, exact values are found of , and  and,, n is even and , where be a flower graph and T<span style='font-size:10.0pt;mso-ansi-font-siz
METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERSAMAAN PANAS Andi Tri Wardana; Yuni Yulida; Na’imah Hijriati
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 9, No 2 (2015): JURNAL EPSILON VOLUME 9 NOMOR 2
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (164.102 KB) | DOI: 10.20527/epsilon.v9i2.14

Abstract

The differential equation is an equation in which there is a derivative of one or more independent variables. The differential equation can be divided into two groups, Ordinary differential equation and Partial differential equation. One method for solving ordinary differential equations is the Adomian Decomposition Method which is used to facilitate in the solving of ordinary nonlinear differential equations. Adomian decomposition method is a method that can also be used to determine the solution of partial differential equations, one of which can be applied to the heat equation. This study was conducted using literature study. The results of this study show that the solution of the linear heat equation is: 1100 (,) (,) (, 0) (,) (,) nttxxnnnuxtuxtuxLgxtLLuxt∞∞ - ==  == ++ ΣΣ with 10 ( ,) (, 0) (,) tuxtuxLgxt - = + and 1 (,) (,), 1,2,3, ... ntxxnuxtLLuxtn - == and the solution of nonlinear heat equation is: 11000 (,) (,) (, 0) (,) (,) ntxxntnnnnuxtuxtuxLLuxtLAxt∞∞∞ - ===== ++ ΣΣΣ with 0 (,) (, 0) uxtux = and 111 (,) (,) (,), 0,1,2, ... ntxxntnuxtLLuxtLAxtn - + = + =
MODEL MATEMATIKA PENYEBARAN PENYAKIT DEARE DENGAN ADANYA TREATMENT Vika Astuti; Yuni Yulida; Thresye Thresye
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol. 15(1), 2021
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (389.548 KB) | DOI: 10.20527/epsilon.v15i1.3152

Abstract

Diare (diarrhea) merupakan suatu penyakit lingkungan dengan faktor penyebab yang paling dominan adalah pembuangan tinja dan sarana air bersih. Dua faktor tersebut akan berinteraksi bersamaan dengan perlakuan manusia. Jika lingkungan tercemar virus atau bakteri kemudian ditambah dengan perlakuan manusia yang tidak sehat dengan melalui apa yang mereka makan juga minum, maka akan mendatangkan penyakit diare. Individu yang terinfeksi penyakit diare dapat diberikan perlindungan untuk melawan infeksi melalui pengobatan (treatment). Penyakit diare tersebut dapat dinyatakan melalui model SIR tetapi model tersebut tidak cukup untuk menyelesaikan permasalahan ini maka dilakukan pengembangan model tersebut dengan menambahkan adanya kompartemen Treatment. Tujuan dari penelitian ini yaitu membentuk model kemudian menentukan solusi positif, setela itu menentukan ekuilibrium, menentukan nilai Basic Reproduction Number dan yang terakhir menentukan kestabilan model matematika penyakit diare dengan adanya treatment. Pada penelitian ini nilai Basic Reproduction Number ditentukan menggunakan Next Generation Matrix, sedangkan analisa kestabilan di sekitar ekuilibrium penyakit menggunakan nilai eigen dari Matriks Jacobian. Hasil dari penelitian ini adalah terbentuknya model diare dengan adanya treatment dan diperoleh solusi positifnya. Kemudian ekuilibrium bebas penyakit pada model ini stabil asimtotik lokal jika  dan ekuilibrium endemiknya yaitu stabil asimtotik lokal jika  dan syarat tambahan. Simulasi model diberikan menggunakan paramater-paramter yang bersesuaian dengan syarat pada analisa kestabilan. 
PENGARUH PEMBERIAN VITAMIN C DAN SULFAS FERROSES (SF) PADA IBU HAMIL UNTUK MENGURANGI RISIKO ANEMIA PADA SAAT PERSALINAN MENGGUNAKAN ANALISIS DATA BERPASANGAN (STUDI KASUS SEBUAH KLINIK BERSALIN DI BANJARMASIN) Dewi Anggraini; Dewi Sri Susanti; Nur Salam
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 5, No 1 (2011): JURNAL EPSILON VOLUME 5 NOMOR 1
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (134.69 KB) | DOI: 10.20527/epsilon.v5i1.66

Abstract

Paired data analysis (analysis of paired data) is a statistical analysis that is used for a studywhere there is only one sample or group of individuals or objects of observation are used andsubjected to two treatments or measurements resulting in a valuepairs. Two pieces of data said tobe in pairs when any value in the first data in accordance and is associated with a single value toboth the data. In other words, two pairs of data which can be interpreted as a sample of thesubject/object of the same observations are given two treatments (treatment)/differentmeasurements. This study aims to clarify the effect of Vitamin C and Sulfas Ferroses (SF) inpregnant women towards the increasing level of their hemoglobin.The method of this research is a study literature and case study, by collecting and studyng therelevant references on the analysis of data pairs, then applying to data in a maternity clinic inBanjarmasin.The results shows that Vitamin C and Sulfas Ferroses (SF) have influenced to the increase ofhemoglobin level in pregnant women.
SPLIT-SPLIT PLOT DESIGN (SSPD) Rizki Fatriasi; Dewi Anggraini; Dewi Sri Susanti
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 7, No 2 (2013): JURNAL EPSILON VOLUME 7 NOMOR 2
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (209.007 KB) | DOI: 10.20527/epsilon.v7i2.98

Abstract

Split-Split Plot Design (SSPD) is an extension of the Split Plot Design (SPD) where in SSPD has an additional sub-subplot. SSPD requires the same principles with SPD so the placement of factor is set to be the main plot for a less important factor, the subplot for a more important factor, and the sub-subplot for the most important factor. The purpose of the research is to explain the properties of usage and estimate the parameters of SSPD’s model.
PELABELAN TOTAL TAK-AJAIB SISI PADA MULTISTAR Yoga Jati Kusuma; Dominikus Arif Budi Prasetyo
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 14, No 2 (2020): JURNAL EPSILON VOLUME 14 NOMOR 2
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (383.386 KB) | DOI: 10.20527/epsilon.v14i2.3196

Abstract

Graph theory contains several topics, one of which will be discussed in this study is graph labeling. In the topic of labeling, the graph used is a limited, simple, and undirected graph. In this study, the type of labeling used is total labeling. The multistar graph used in this study is a combination of star graphs whose center vertex are not connected to each other. This research uses literature research method which is divided into two parts, that is the basic calculation to determine the boundary of the first term ???????? and the difference ???????? from the (????????,????????) edge antimagic total labeling on the ???????????????????????? multistar graph. The second part is to apply (????????,????????) edge antimagic total labeling to the multistar graph ????????????????????????. In multistar ???????????????????????? can be labeled by (????????,????????) edge antimagic total labeling by ????3????????2????????2+5????????2????????+4???????????? 2???????????? ,1???? and ????2????????2????????2+5????????2????????+5???????????? 2???????????? ,2???? for center label smallest value, with ????????≥1 and ????????≥2. Otherwise, for center label largest value can be done by ????7????????2????????2+????????2????????+4???????????? 2???????????? ,1????and ????6????????2????????2+????????2????????+5???????????? 2???????????? ,2???? with ????????≥1 and ????????≥2.