cover
Contact Name
Juhari
Contact Email
juhari@uin-malang.ac.id
Phone
+6281336397956
Journal Mail Official
cauchy@uin-malang.ac.id
Editorial Address
Jalan Gajayana 50 Malang, Jawa Timur, Indonesia 65144 Faximile (+62) 341 558933
Location
Kota malang,
Jawa timur
INDONESIA
CAUCHY: Jurnal Matematika Murni dan Aplikasi
ISSN : 20860382     EISSN : 24773344     DOI : 10.18860
Core Subject : Education,
Jurnal CAUCHY secara berkala terbit dua (2) kali dalam setahun. Redaksi menerima tulisan ilmiah hasil penelitian, kajian kepustakaan, analisis dan pemecahan permasalahan di bidang Matematika (Aljabar, Analisis, Statistika, Komputasi, dan Terapan). Naskah yang diterima akan dikilas (review) oleh Mitra Bestari (reviewer) untuk dinilai substansi kelayakan naskah. Redaksi berhak mengedit naskah sejauh tidak mengubah substansi inti, hal ini dimaksudkan untuk keseragaman format dan gaya penulisan.
Arjuna Subject : -
Articles 438 Documents
Integrating Path Analysis and Kendall’s Tau-based Principal Component Analysis to Identify Determinants of Child Health Alim, Viky Iqbal Azizul; Iriany, Atiek; Fernandes, Adji Achmad Rinaldo; Solimun, Solimun; Utomo, Candra Rezzining Wulat Sariro Weni
CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 10, No 2 (2025): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI
Publisher : Mathematics Department, Universitas Islam Negeri Maulana Malik Ibrahim Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/cauchy.v10i2.31156

Abstract

This study develops a latent variable path analysis model using a Mixed-Scale Principal Component Analysis (PCA) approach based on Kendall’s Tau correlation to identify key determinants of child health in Batu City, Indonesia. Primary data were collected from 100 mothers with children under five years old through questionnaires. The variables examined include Family Demographics, Nutritional Consumption, and Child Health Condition, each measured using mixed-scale indicators (ordinal and numerical). Kendall’s Tau-based PCA was applied to reduce data dimensionality and construct latent variables, which were then integrated into a path analysis model. The results show that maternal age is the most dominant indicator in shaping the Family Demographics construct, while balanced nutritional food is the strongest indicator forming the Nutritional Consumption construct. Path analysis further reveals that Family Demographics significantly affect Child Health Condition both directly and indirectly through Nutritional Consumption, with a coefficient of determination of 77.62\%. These findings underscore the critical role of demographic and nutritional factors in determining child health outcomes and highlight the methodological advantage of Kendall’s Tau-based mixed-scale PCA for analyzing heterogeneous indicator data within a structural path framework.
Explicit Determinant and Inverse Formulas of Skew Circulant Matrices with Alternating Fibonacci Numbers Handoyo, Sapto Mukti; Guritman, Sugi; Mas'oed, Teduh Wulandari; Jaharuddin, Jaharuddin
CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 10, No 2 (2025): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI
Publisher : Mathematics Department, Universitas Islam Negeri Maulana Malik Ibrahim Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/cauchy.v10i2.32358

Abstract

Skew circulant matrices have various applications such as cryptography, signal processing, and many more. Their structure can potentially simplify their determinant and inverse computations. This study presents explicit formulas for the determinant and inverse of skew circulant matrices with entries from the alternating Fibonacci sequence. Elementary row and column operations are used to derive simple explicit formulas for the determinant and inverse. Computational tests using Wolfram Mathematica show that the algorithm built from these explicit formulas performs with much faster execution time than the built-in functions, especially for large matrix size. The proposed approach offers a practical method for the numerical computation of the determinant and inverse of these matrices
Identification of Earthquake Prone Zones in Sumatra using Density Based Spatial Clustering of Applications with Noise Sirodj, Dwi Agustin Nuriani; Aidi, Muhammad Nur; Sartono, Bagus; Syafitri, Utami Dyah; Pranata, Bayu
CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 10, No 2 (2025): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI
Publisher : Mathematics Department, Universitas Islam Negeri Maulana Malik Ibrahim Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/cauchy.v10i2.36120

Abstract

This study investigates the spatial distribution of earthquakes in Sumatra using the DBSCAN clustering algorithm applied to seismic data spanning 1 January 2000 to 31 December 2023. The analysis identified two distinct seismic clusters: one in the northern region (Aceh and North Sumatra) and another in the southern region (Lampung, Bengkulu, and West Sumatra), while several events in central areas were classified as noise. Cluster validity assessment confirmed that the identified groups are compact and well separated, reflecting meaningful seismotectonic segmentation. Statistical testing further revealed significant differences in earthquake depth and magnitude between the clusters, supporting the robustness of the findings. Notably, the southern cluster corresponds to the Mentawai Fault system, whereas the northern cluster aligns with the subduction zone and the Sumatran Fault. DBSCAN proved particularly effective in this context as it can capture clusters of arbitrary shapes, consistent with the complex geological structures governing seismicity in Sumatra.
Rainfall Forecasting using Spatio-Temporal and Neural Network Study Case: Meteorological Data of Madura Island Savira, Ryanta Meylinda; Permata, Regita Putri; Alifah, Amalia Nur; Setiawan, Yohanes; Putra, Adzanil Rachmadhi
CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 10, No 2 (2025): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI
Publisher : Mathematics Department, Universitas Islam Negeri Maulana Malik Ibrahim Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/cauchy.v10i2.35091

Abstract

Rainfall forecasting is crucial in meteorological studies due to its significant impact on sectors such as agriculture, which is the main livelihood on Madura Island. This study aims to forecast rainfall on Madura Island using a hybrid approach that combines the Generalized Space-Time Autoregressive-X (GSTARX) model and Neural Network (NN). The data used consist of daily rainfall records from Bangkalan, Sampang, Pamekasan, and Sumenep, covering the period from January 2013 to December 2023. Data from January 2013 to September 2023 were used for training, while data from October to December 2023 were used for testing. The GSTARX model was employed to capture spatio-temporal patterns, while the NN was applied to learn the non-linear relationships in the residuals. The results show that the GSTARX model effectively captures rainfall patterns, though some differences remain compared to the actual data, with RMSE values of Bangkalan (1.514), Sampang (0.256), Pamekasan (0.477), and Sumenep (0.127). Meanwhile, the hybrid GSTARX-FFNN model achieved improved forecasting performance in Sampang (0.392), Pamekasan (0.679), and Sumenep (0.412), although Bangkalan recorded a higher RMSE (1.359). Overall, the GSTARX model proved more effective in forecasting rainfall on Madura Island, delivering smaller and more consistent prediction errors.
Combining IoT and Time Series Model for Minute-Level Outlier Detection in Wind Speed Forecasting Huda, Nur'ainul Miftahul; Imro'ah, Nurfitri; Hidayati, Rahmi; Sari, Kartika
CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 10, No 2 (2025): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI
Publisher : Mathematics Department, Universitas Islam Negeri Maulana Malik Ibrahim Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/cauchy.v10i2.35768

Abstract

Renewable energy optimisation and early warning systems require accurate short-term wind speed forecast. Anomalies in environmental data impair forecasting model reliability. This paper presents an integrated approach using IoT-based remote sensing and time series modelling to address the issue. IoT-based anemometer sensors collected wind speed data at one-minute intervals from December 24, 2024, to January 10, 2025. Aggregating the raw data into 5-minute intervals prepared it for the ARIMA model. This model determined temporal patterns and predicted short-term wind speeds. Analyzing residuals between observed and predicted results helped identify wind outliers. This approach is novel because it uses IoT-based continuous sensing and time series modeling for real-time environmental monitoring. Studies showed that a 65-minute frame with 5-minute intervals was best for replicating wind speed dynamics. Six cycles of outlier detection found 87 outliers. The ARIMA model improved predictions by include these outliers as exogenous variables. This emphasizes the importance of fixing time series model anomalies to improve prediction. The augmented ARIMA model with outlier corrections provides minute-level forecasts and reliable anomaly identification for renewable energy optimization and early warning systems. This study shows that new statistical methods and the Internet of Things (IoT) can improve real-time environmental and energy decisions.
Time-varying Distribution Analysis for Rainfall and Air Temperature Data in Jakarta in Response to Future Climate Change Setyawati, Suci Nur; Nurdiati, Sri; Mangku, I Wayan; Najib, Mohamad Khoirun
CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 10, No 2 (2025): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI
Publisher : Mathematics Department, Universitas Islam Negeri Maulana Malik Ibrahim Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/cauchy.v10i2.32780

Abstract

AbstractIndonesia is vulnerable to climate change (rainfall and air temperature), which can increase the chances of climatic disasters. An organized risk analysis is a strategic plan to minimize the impact. The purpose of this research is to estimate time-varying distribution parameters for normal, generalized extreme value (GEV), and lognormal distributions using fminsearch and MLE algorithms on rainfall and air temperature data in Jakarta, as well as visualize and analyze the best time-varying distribution. The maximum likelihood estimation (MLE) method is used for stationary distribution parameter estimation. The fminsearch algorithm is used for stationary and nonstationary distribution parameter estimation. The highest difference value of stationary distribution parameter results from both methods is 5.3768 mm for rainfall data and 0.2670°C for air temperature data. The results of the best distribution based on the AIC value are the 3-parameter lognormal distribution for rainfall data and the 4-parameter GEV distribution for air temperature data. Over time, the variance of rainfall increases, and the average air temperature increases with a fixed variance.
Security Analysis of Modified ESRKGS-RSA Using Lenstra’s Elliptic Curve Method Susanti, Bety Hayat; Sumule, Aditya Sukhoi Lean; Ardyani, Mareta Wahyu
CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 10, No 2 (2025): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI
Publisher : Mathematics Department, Universitas Islam Negeri Maulana Malik Ibrahim Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/cauchy.v10i2.32189

Abstract

The Enhanced and Secure RSA Key Generation Scheme (ESRKGS), introduced in 2014, aimed to improve RSA security by employing a modulus constructed from four prime factors. However, subsequent studies in 2016 revealed that this structure did not provide additional security over standard RSA. In response, a modified version of ESRKGS was proposed in 2021, incorporating dual encoding techniques using a masking parameter γ and double encryption. This study evaluates the security of the modified ESRKGS by simulating an attack scenario in which the adversary is assumed to know of ϕ(N ), enabling recovery of encrypted messages. Additionally, we implement Lenstra’s Elliptic Curve Method (ECM) to assess the factorization resistance of the four-prime modulus when ϕ(N ) is not known. Experimental results indicate that ECM can efficiently factor the modulus into its four constituent primes under practical time constraints. These findings demonstrate that, despite recent modifications, the ESRKGS variant remains vulnerable to factorization based attacks. This highlights the necessity for more rigorous cryptographic design principles in multiprime RSA systems and calls into question the long-term viability of ESRKGS-based schemes in high-security applications.
A Hybrid Sweep-Nearest Neighbor-Tabu Search Approach for CVRP in FMCG Route Distribution Evary, Sikhatun Naimah; Abusini, Sobri; Muslikh, Mohamad
CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 10, No 2 (2025): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI
Publisher : Mathematics Department, Universitas Islam Negeri Maulana Malik Ibrahim Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/cauchy.v10i2.35953

Abstract

This study addresses the Capacitated Vehicle Routing Problem (CVRP) in the distribution of Fast-Moving Consumer Goods (FMCG) by proposing a hybrid approach that combines the Sweep algorithm, Nearest Neighbor (NN) method, and Tabu Search (TS) algorithm. The objective is to satisfy consumer demand and vehicle capacity restrictions while minimizing the overall journey distance. The Sweep algorithm is used to cluster customers based on polar coordinates, the NN method determines initial delivery routes within each cluster, and TS refines those routes to find near-optimal solutions. Implemented on a real-world dataset of 248 stores in Malang, the proposed hybrid method achieved significant reductions in the number of clusters and total travel distance compared to conventional approaches. Results show that the Sweep algorithm successfully reduced the number of delivery clusters from 26 to 18, achieving a 30.77% reduction in grouping efficiency. Using the Nearest Neighbor method, the total route distance was 2,191.08 km. Further optimization with Tabu Search reduced the Distance to 2141.31 km. Compared to the conventional method, which is 2345.90 km, the hybrid approach resulted in an 8.72% improvement in route efficiency. These findings demonstrate that the integrated method is effective for large-scale distribution problems under capacity constraints. The hybrid method offers a practical and computationally efficient solution for large-scale FMCG distribution networks.
Application of Propensity Score Matching for Analyzing Factors Contributing to Pre-Diabetes Putri, Oktaviani Aisyah; Fitrianto, Anwar; Alamudi, Aam
CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 10, No 2 (2025): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI
Publisher : Mathematics Department, Universitas Islam Negeri Maulana Malik Ibrahim Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/cauchy.v10i2.32754

Abstract

Inappropriate comparisons between control and treatment groups can be caused by overlapping factors, usually called confounders. Propensity score methods help reduce bias from measured confounding by summarizing the distribution of multiple measured confounders into a single score, based on the probability of receiving treatment. This study applies binary logistic regression to estimate propensity scores and identify risk factors that significantly influence complications in fasting blood glucose levels. Nearest Neighbor Matching (NNM) is used with various caliper and score orders to determine the most effective combination in reducing bias. The results show that gender becomes a confounding variable. Both the order of propensity scores and caliper selection affect the outcome of the matching process. Matching with a random order and caliper yields the best result, with 99,93 percent reduction bias. The significance of the average treatment effect for treated (ATT), all condition order with caliper indicates that gender have a positive relationship and significantly affects fasting blood glucose levels. Also, based on the matching results with the best combination, it indicates that age, academic position, structural position, education level, and lecturer performance do not influence abnormal fasting blood sugar (FBS).
A Hybrid ARIMA-Intervention Modelling for Forest Fire Risk in The Dry Season Imro'ah, Nurfitri; Huda, Nur'ainul Miftahul; Pratiwi, Hesty; Ayyash, Muhammad Yahya
CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 10, No 2 (2025): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI
Publisher : Mathematics Department, Universitas Islam Negeri Maulana Malik Ibrahim Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/cauchy.v10i2.36741

Abstract

This study explores the time-related patterns of forest fires and assesses the impact of measures implemented during the dry season. Special focus is directed towards the effects of these interventions on the frequency and intensity of fires. This study highlights the importance of combining temporal analysis with spatial data to identify high-risk locations and optimize resource allocation for fire prevention. This study develops an ARIMA model to forecast fire risk before intervention. The findings indicate that integrating intervention factors into the ARIMA model will enhance the model's accuracy. The satisfactory MAPE values and the value data plots effectively demonstrate the data patterns. This method establishes a solid basis for predicting and reducing the risk of forest fires in the dry season, thereby enhancing the fire resilience of ecosystems considered at risk. The findings indicate that the onset of the dry season significantly elevates the risk of forest fires, especially in areas near bodies of water.

Filter by Year

2009 2026


Filter By Issues
All Issue Vol 11, No 1 (2026): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI Vol 10, No 2 (2025): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI Vol 10, No 1 (2025): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI Vol 9, No 2 (2024): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI Vol 9, No 1 (2024): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI Vol 8, No 2 (2023): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI Vol 7, No 4 (2023): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI Vol 7, No 2 (2022): CAUCHY: Jurnal Matematika Murni dan Aplikasi (May 2022) (Issue in Progress) Vol 7, No 3 (2022): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI Vol 7, No 2 (2022): CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 7, No 1 (2021): CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 6, No 4 (2021): CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 6, No 3 (2020): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI Vol 6, No 2 (2020): CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 6, No 1 (2019): CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 5, No 4 (2019): CAUCHY Vol 5, No 4 (2019): CAUCHY Vol 5, No 3 (2018): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI Vol 5, No 3 (2018): CAUCHY Vol 5, No 2 (2018): CAUCHY Vol 5, No 1 (2017): CAUCHY Vol 4, No 4 (2017): CAUCHY Vol 4, No 3 (2016): CAUCHY Vol 4, No 2 (2016): CAUCHY Vol 4, No 1 (2015): CAUCHY Vol 3, No 4 (2015): CAUCHY Vol 3, No 3 (2014): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI Vol 3, No 3 (2014): CAUCHY Vol 3, No 2 (2014): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI Vol 3, No 2 (2014): CAUCHY Vol 3, No 1 (2013): Cauchy Vol 3, No 1 (2013): CAUCHY Vol 2, No 4 (2013): CAUCHY Vol 2, No 3 (2012): CAUCHY Vol 2, No 2 (2012): CAUCHY Vol 2, No 1 (2011): CAUCHY Vol 1, No 4 (2011): CAUCHY Vol 1, No 2 (2010): CAUCHY Vol 1, No 1 (2009): CAUCHY More Issue