cover
Contact Name
Masruri
Contact Email
masruri@ub.ac.id
Phone
+62341-575838
Journal Mail Official
jpacr@ub.ac.id
Editorial Address
Departemen Kimia, Fakultas MIPA, Universitas Brawijaya, Jl. Veteran 65145 Malang
Location
Kota malang,
Jawa timur
INDONESIA
The Journal of Pure and Applied Chemistry Research
Published by Universitas Brawijaya
ISSN : 23024690     EISSN : 25410733     DOI : http://dx.doi.org/10.21776/ub.jpacr
The Journal of Pure and Applied Chemistry Research focuses in publishing research articles in the field of Chemistry and Applied Chemistry. The target is in exploring, investigating, and developing chemicals sources from local and/or Indonesian to increase the value. Scope of the journal is organic chemistry, analytical chemistry, inorganic chemistry, biochemistry, and physical chemistry. Included the topic also organic chemistry natural product, theoretical and computational chemistry.
Articles 306 Documents
Garcinia Mangostana Peel Extract as Sustainable Fuel Source on Ceria Synthesis under Hydrothermal Condition SALPRIMA YUDHA S; Morina Adfa; Aswin Falahudin; Deni Agus Triawan; Liana Wahyuni; Meka Saima Perdani
The Journal of Pure and Applied Chemistry Research Vol 8, No 3 (2019): Edition September-December 2019
Publisher : Chemistry Department, The University of Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/ub.jpacr.2019.008.03.496

Abstract

Cerium (IV) oxide or ceria (CeO2) was fabricated by heating an aqueous extract of Garcinia mangostana and cerium (III) nitrate in hydrothermal autoclave reactor at 200 °C for 3 hours, followed by calcination at 600 °C for 5 hours. The powder X-ray diffraction (XRD) pattern of the precipitate from cerium(III) nitrate under hydrothermal reaction conditions shows no clear XRD peaks, indicating its amorphous nature. In contrast, the products from the calcinated samples exhibit XRD peaks, which correspond to cubic fluorite structure with an average crystal size of 7.55 nm. The elemental mapping using the energy-dispersive X-ray (EDX) analysis reveals the main elements present were cerium and oxygen, with minor impurities in low amounts. The presence of Garcinia mangostana extract is predicted to be the key component and fuel source to obtain CeO2 particles with narrow crystal size.
Degradation and Mineralization of Pesticide Isoprocarb by Electro Fenton Process Hayet Bakhti; Najib Ben Hamida; Didier Hauchard
The Journal of Pure and Applied Chemistry Research Vol 9, No 1 (2020): Edition January-April 2020
Publisher : Chemistry Department, The University of Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/ub.jpacr.2020.009.01.490

Abstract

Electro Fenton with volumic cathode consisting of granules of carbon graphite was applied to degrade the insecticide Isoprocarb in aqueous solutions. The effects of various factors including current intensity and pesticide initial concentration were investigated in order to obtain the best experimental conditions for its degradation and mineralization. Kinetic studies determined that the insecticide removal followed a pseudo first order. The absolute rate constant for the oxidation of Isoprocarb by hydroxyl radicals were determined as 3.32 × 109 L mol−1 s−1 by competitive kinetics method taking benzoic acid as reference compound. In this work, we have also studied the mineralization of aqueous solutions of this insecticide in term of total organic carbon (TOC). After 3 hours of electrolysis, and at I = 800 mA, more than 40 % of the organic carbon presented in the solution is mineralized. Various aromatic by-products, principally formed by oxidation of the pesticide, accompanied by hydroxylation of the aromatic cycle, have been identified. Thus, the oxidative opening of the aromatic ring leads to the formation of carboxylic acids and nitrate ions. The biodegradability of Isoprocarb is estimated by the measurement of its Biochemical Oxygen Demand (BOD5).Keywords: Isoprocarb, electro Fenton, mineralization, hydroxyl radicals, oxidation.
Computational Studies of Some Hydrazone Derivatives as Antibacterial Agent: DFT and Docking Methods Abel Oyebamiji; B. Benjamin Adeleke; Ajibade Adejoro; Oyedeji Folashade
The Journal of Pure and Applied Chemistry Research Vol 8, No 1 (2019): Edition January-April 2019
Publisher : Chemistry Department, The University of Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/ub.jpacr.2019.008.1.433

Abstract

Quantum chemical calculations through density functional theory and docking study were carried out on a set of seven hydrazones and S. aureus cell line (4b19) so as to observe their inhibitory abilities of hydrazones. Many parameters which describe the anti-S. aureus were evaluated. All the compounds under study were docked against S. aureus cell line as receptors and the resulting binding energies reflected the extent of their binding affinities. 2,4-dinitrophenylhydrazone of formaldehyde showed the highest binding affinity.
The Bioavailability and Risk Potential of Copper and Zinc of Soil as An Indicator Heavy Metals Contamination in The Aquatic System in Sumber Nyolo, Karangploso, East Java Rifnida Azmi Fitratian; Barlah Rumhayati; Andi Kurniawan
The Journal of Pure and Applied Chemistry Research Vol 8, No 1 (2019): Edition January-April 2019
Publisher : Chemistry Department, The University of Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/ub.jpacr.2019.008.01.442

Abstract

The bioavailability potential of heavy metals in the soil can be used as an indicator of heavy metals pollution in an aquatic system. This research were aimed to determine the distribution of geochemical fractions of copper and zinc in the soil, and to determine the potential risk of soil to the contamination of copper and zinc in Sumber Nyolo aquatic system. Soil samples were collected from five sites at the upper and downstream of the Sumber Nyolo by using grab sampling. Samples were pretreated before metals analysis. Geochemical fractions of copper and zinc was extracted using the Community Bereau of Reference (BCR) modified technique and followed by copper and zinc analysis using Atomic Absorption Spectroscopy. The results showed that copper was found dominantly as oxidisable fraction (F3) at 19.11 ± 11.8 mg/kg (25 ± 15.5%), while zinc was found as oxidisable fraction (F3) at 228.4 ± 283.5 mg/kg (34 ± 34.7%). As the first fraction (F1) that is referred as the bioavailable fraction, copper (13 ± 12.7%) was more potentially released from soil to water body than zinc (4 ± 5.1%), so copper was more bioavailable. Based on correlation with physical-chemical properties of soil, copper will be released when there is increasing of soil redox potential, increasing of cation exchange capacity and changes of pH to acid condition. Furthermore, the Risk Assessment Code (RAC) value for copper and zinc in soil from Sumber Nyolo were 0.13% and 0.04%, respectively. This indicated that soil in Sumber Nyolo has no harmful for copper and zinc contamination in the aquatic system. In conclusion, by understanding the distribution of geochemical fractions of copper and zinc in soil and soil potential risk, it can be predicted the potentially contamination of copper and zinc in the aquatic system which is interacted with the soil.
Effect of Dilution and Electrolysis Time on Recovery of Mg2+ As Mg(OH)2 from Bittern by Electrochemical Method Hanif Amrulloh; Wasinton Simanjutak; Rudy Tahan Mangapul Situmeang; Sophia Lasma Sagala; Rikha Bramawanto; Ridho Nahrowi
The Journal of Pure and Applied Chemistry Research Vol 8, No 1 (2019): Edition January-April 2019
Publisher : Chemistry Department, The University of Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/ub.jpacr.2019.008.01.455

Abstract

This research was conducted to study the effect of dilution and electrolysis time on therecovery of Mg2+as Mg(OH)2from bittern by electrochemical method. The electrochemical process was carried out using 2-compartment electrochemical cell, connected by salt bridge prepared from NaCl suspended in gelatin. The experiment was carried out using nickel as cathode and carbon as an anode. The electrolysis process was carried out at a potential of 18 volts with dilution factors of 0, 2, 4, 6, and 8 times, and electrolysis time of 1, 2, 4, 6, 8, 10, and 12 hours. The results show that percent of conversion increased with dilution with the best result was obtained at 4x dilution factor and 4 hours electrolysis time with percent conversion of 85 % and purity of Mg(OH)291%
Synthesis of Eugenyl Cinnamate from Clove Oil (Syzygium aromaticum) via Bromination-Dehydrobromination Methods Anita Alni; Didin Mujahidin; Shinta Ellisya Fauzia
The Journal of Pure and Applied Chemistry Research Vol 8, No 2 (2019): Edition May-August 2019
Publisher : Chemistry Department, The University of Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/ub.jpacr.2019.008.02.458

Abstract

Synthesis of bioactive materials based on Indonesian natural products as precursors are potential to achieve a sustainable supply of modern medicines. Eugenyl cinnamate is a crucial building blocks in many bioactive compunds such as hepatoprotective silibinin. This research features simple synthesis of eugenyl cinnamate from eugenol, an essential oil presents as major constituent of clove oil (Syzygium aromaticum). The transformations were carried out via protection of hydroxyl group, bromination, and dehydrobromination reactions of eugenol (1) consecutively. The products of the synthesis were purified by gravity column chromatography and were characterized by FTIR and NMR spectroscopy. Benzylation of eugenol was carried out under basic condition with high yield (94.3%). Characterization by spectroscopic methods showed that eugenyl benzyl ether (2) was formed. Bromination of eugenyl benzyl ether yielded three products, namely: dibromo (3a and 3b), and tri-bromo eugenyl benzyl ether (3c). Compound 3a and 3b were epimers based on intensive NMR analysis (1H, 13C and DEPT). These epimers were separable using simple gravitational colomn chromatography. Bromination of eugenyl acetyl ether (4) yielded the targeted dibromo product (5). Dehydrobromination reaction of compound 5 with cinnamic acid yielded the eugenyl cinnamate (6) with yield of 23.2%. This compound is precursor in the hetero Diels-Alder reaction to form the dioxan unit of Silibinin. 
Simple and Rapid Device for Mercury Detection Based on The Formation of Mercury(II)-Dithizonate on Polytetrafluoroethylene (PTFE) Membrane Hermin Sulistyarti; Mega Madha Wijaya; Dewi Setyowati; Sutrisno Sutrisno; Erwin Sulistyo
The Journal of Pure and Applied Chemistry Research Vol 8, No 2 (2019): Edition May-August 2019
Publisher : Chemistry Department, The University of Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/ub.jpacr.2019.008.02.473

Abstract

A new analytical device for mercury detection has been developed by doping dithizone on to hydrophobic PTFE (polytetrafluoroethylene) membrane to form a blue dithizone membrane which instantaneously changed to orange color of mercury(II)-dithizonate complex, when this dithizone membrane was contacted to mercury(II) solution. The higher concentration of mercury showed the greater intensity of the orange colour mercury(II)-dithizonate complex. The design and chemicals were optimized to obtain the best performance for mercury measurement. This method is prospective as mercury test kit for simple, low cost, and rapid semi-quantitative method for mercury(II) determination from 1-10 mgL-1 suits for on-site mercury detection and has been applied to cosmetics with satisfactory results.
The Effect of Acidity and Aging Time in The Synthesis of Al(OH)3 from The Anodized-waste with a Sol-Gel Method Sri Wardhani; Danar Purwonugroho; Deka Permatasari; Darjito Darjito
The Journal of Pure and Applied Chemistry Research Vol 8, No 3 (2019): Edition September-December 2019
Publisher : Chemistry Department, The University of Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/ub.jpacr.2019.008.03.477

Abstract

Synthesis of alumina has been carried out by utilizing anodized waste as raw material. Anodized waste is a by-product of metal anodizing processes such as aluminium. This study aims to determine the effect of acidity (pH) and aging time on the mass of Al(OH)3 and the property of Al(OH)3 as well as Al2O3 that produced. Anodized waste was deposited into Al(OH)3 and then purified. Alumina synthesized by the sol-gel method with pH variations of 7, 8, 9, and 10 and aging times of 24, 48, and 72 hours. The Al(OH)3, which has been produced, was characterized by PSA and powder XRD spectrophotometer. The results showed that the synthesis of Al(OH)3 was influenced by pH and aging time. It affects the yield and particle size of Al(OH)3. The optimum condition of the synthesis was pH 7 and aging time of 24 hours with yield of 1.85 grams. Characterization by PSA at a current diameter of 90% indicate that higher pH value and longer aging time produces smaller particle size. Characterization by powder XRD shows that the Al(OH)3 has gibbsite crystal phase with d values of 3.360, 3.217, 2.252, 2.029, and 1.649 Å.
The Mechanically Extraction Process of Gambier (Uncaria gambier Roxb.) from Limapuluh Kota, West Sumatera and Its Antioxidant activity Galuh Widiyarti; Andini Sundowo; Euis Filailla; Joddy Arya Laksmono
The Journal of Pure and Applied Chemistry Research Vol 9, No 1 (2020): Edition January-April 2020
Publisher : Chemistry Department, The University of Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/jpacr.ub.2020.009.01.509

Abstract

The extraction process from leaves and twigs of gambier (Uncaria gambier Roxb)plant was conducted mechanically by using traditional hydraulic press, conventional screw press, and modified twin-screw press. The leaves and twigs of gambier plant was obtained from traditional farmer in Limapuluh Kota, West Sumatera, Indonesia. The water, ash and catechin contents of the gambier extracts were analyzed based on SNI 01-3391-2000 using spectrophotometry and thermogravimetry method. Antioxidant activity analysis of the extracts was also performed by 1,1-diphenyl-2-picrylhidrazyl (DPPH) method and compared tovitamin C as a standard antioxidant. The analysis results showed that the extracts contain no ash. Meanwhile, the catechin and water contents of the extracts were approximately 50 and 13% thus the extracts were classified as quality gambier 2. Other than that, analysis result of catechin and epicatechin contents of the extracts using HPLC and compared to the reference materials showed that catechins contents of the extracts using traditional hydraulic press, conventionalscrew press, and modified twin-screw press give catechin content in about 94.296-95.030%. However, epicatechin was detected in a trace amount. The antioxidant activity of the extracts were 2.5 times stronger than reference. The IC50 value of 4.37-4.52 µg/mL and was categorized as active antioxidant.
Effect of Precursor Concentration and Annealed Substrate Temperature on the Crystal Structure, Electronic and Optical Properties of ZnO thin film Yus Rama Denny Muchtar; Teguh Firmansyah; Adhitya Trenggono; Danu Wijaya; Ganesha Antarnusa; Andri Suherman
The Journal of Pure and Applied Chemistry Research Vol 9, No 1 (2020): Edition January-April 2020
Publisher : Chemistry Department, The University of Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/ub.jpacr.2020.009.01.514

Abstract

This study carried out on the effect of precursor concentration and annealed substrate temperature on the crystal structure, electronic and optical properties of ZnO thin film. An aqueous solution of Acid Nitrite was used as precursors and its concentration was varied from 0.1 M to 0.4 M. The ZnO thin film was deposited on the glass substrate by Spray Pyrolysis Deposition and annealed with different temperature from 300 oC to 600 oC. The crystal structure, electronic and optical properties were investigated by Scanning Electron Microscopy (SEM), X-ray diffraction (XRD) and UV-Spectrometer. XRD result showed that all thin films have amorphous hexagonal wurtzite crystalline. Particle sizes ranging from 21.83 to 43.67 nm were calculated through Debye-Scherer Method. It showed that the concentration of the precursor had slightly impact on the particle size. Meanwhile, the increase in particle size with increasing annealed temperature is found to be gradual. The average transparent of all thin film was more than 80%. The bandgap of the ZnO thin films was estimated by Tauc Plot Relation. It showed that the bandgap values were increased with the increasing of precursor concentration due to Burstein-Moss Effect. In addition, the decrease in band gap values was found with increasing annealed temperature. Our results demonstrated that the varying precursor concentration and annealed substrate temperature can enhance the structure, electronic and the optical properties of ZnO thin films.

Filter by Year

2012 2025


Filter By Issues
All Issue Vol. 14 No. 3 (2025): Edition September-December 2025 Vol. 14 No. 2 (2025): Edition May-August 2025 Vol. 14 No. 1 (2025): Edition January-April 2025 Vol. 13 No. 3 (2024): Edition September-December 2024 Vol. 13 No. 2 (2024): Edition May-August 2024 Vol. 13 No. 1 (2024): Edition January-April 2024 Vol. 12 No. 3 (2023): September-December 2023 Vol 12, No 2 (2023): May-August 2023 Vol 12, No 1 (2023): Edition January-April 2023 Vol 11, No 3 (2022): Edition September-December 2022 Vol. 11 No. 2 (2022): Edition May-August 2022 Vol 11, No 2 (2022): Edition May-August 2022 Vol 11, No 1 (2022): Edition January-April 2022 Vol 10, No 3 (2021): Edition September-December 2021 Vol 10, No 2 (2021): Edition May-August 2021 Vol 10, No 1 (2021): Edition January-April 2021 Vol 9, No 3 (2020): Edition September-December 2020 Vol 9, No 2 (2020): Edition May-August 2020 Vol 9, No 1 (2020): Edition January-April 2020 Vol 8, No 3 (2019): Edition September-December 2019 Vol 8, No 2 (2019): Edition May-August 2019 Vol 8, No 1 (2019): Edition January-April 2019 Vol 7, No 3 (2018): Edition September-December 2018 Vol. 7 No. 2 (2018): Edition May-August 2018 Vol 7, No 2 (2018): Edition May-August 2018 Vol 7, No 1 (2018): Edition January-April 2018 Vol 6, No 3 (2017): Edition of September - December 2017 Vol. 6 No. 2 (2017): Edition of May-August 2017 Vol 6, No 2 (2017): Edition of May-August 2017 Vol 6, No 1 (2017): Edition of January - April 2017 Vol 5, No 3 (2016) Vol 5, No 2 (2016) Vol 5, No 1 (2016) Vol 4, No 3 (2015) Vol 4, No 2 (2015) Vol 4, No 1 (2015) Vol. 3 No. 3 (2014) Vol. 3 No. 2 (2014) Vol 3, No 2 (2014) Vol 3, No 1 (2014) Vol 2, No 3 (2013) Vol 2, No 2 (2013) Vol 2, No 2 (2013) Vol 2, No 1 (2013) Vol 1, No 1 (2012) Vol 1, No 1 (2012) More Issue