cover
Contact Name
Nurul Fazriah
Contact Email
jiki@cs.ui.ac.id
Phone
+62217863419
Journal Mail Official
jiki@cs.ui.ac.id
Editorial Address
"Faculty of Computer Science Universitas Indonesia Kampus Baru UI Depok - 16424"
Location
Kota depok,
Jawa barat
INDONESIA
Jurnal Ilmu Komputer dan Informasi
Published by Universitas Indonesia
ISSN : 20887051     EISSN : 25029274     DOI : 10.21609
Core Subject : Science,
Jurnal Ilmu Komputer dan Informasi is a scientific journal in computer science and information containing the scientific literature on studies of pure and applied research in computer science and information and public review of the development of theory, method and applied sciences related to the subject. Jurnal Ilmu Komputer dan Informasi is published by Faculty of Computer Science Universitas Indonesia. Editors invite researchers, practitioners, and students to write scientific developments in fields related to computer science and information. Jurnal Ilmu Komputer dan Informasi is issued 2 (two) times a year in February and June. This journal contains research articles and scientific studies. It can be obtained directly through the Library of the Faculty of Computer Science Universitas Indonesia.
Arjuna Subject : -
Articles 247 Documents
EXPERIMENTAL STUDY ON LIP AND SMILE DETECTION Aryuanto Sutedjo
Jurnal Ilmu Komputer dan Informasi Vol 4, No 2 (2011): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)
Publisher : Faculty of Computer Science - Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (882.325 KB) | DOI: 10.21609/jiki.v4i2.164

Abstract

This paper presents a lip and smile detection method based-on the normalized RGB chromaticity diagram. The method employs the popular Viola-Jones detection method to detect the face. To avoid the false positive, the eye detector is introduced in the detection stage. Only the face candidates with the detected eyes are considered as the face. Once the face is detected, the lip region is localized using the simple geometric rule. Further, the the red color thresholding based-on the normalized RGB chromaticity diagram is proposed to extract the lip. The projection technique is employed for detecting the smile state. From the experiment results, the proposed method achieves the lip detection rate of 97% and the smile detection rate of 94%. Paper ini menyajikan medote pendeteksi bibir dan senyum berdasarkan diagram tingkat kromatis RGB ternormalisasi. Metode ini menggunakan metode Viola-Jones yang populer untuk mendeteksi wajah. Untuk menghindari kesalahan positif, detektor mata diperkenalkan pada tahapan deteksi. Hanya kandidat wajah dengan mata yang telah terdeteksi yang dianggap sebagai wajah. Setelah wajah dideteksi, bagian bibir ditempatkan dengan menggunakan aturan geometris sederhana. Selanjutnya, batasan warna merah berdasarkan pada diagram kromatisitas RGB ternormalisasi digunakan untuk mengekstrak bibir. Teknik proyeksi digunakan untuk mendeteksi keadaan tersenyum. Dari hasil percobaan, metode yang diusulkan mencapai 97% untuk tingkat deteksi bibir dan 94% untuk tingkat deteksi senyum.
Group Decision Support System based on AHP-TOPSIS for Culinary Recommendation System Ratih kartika dewi
Jurnal Ilmu Komputer dan Informasi Vol 12, No 2 (2019): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information
Publisher : Faculty of Computer Science - Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (414.054 KB) | DOI: 10.21609/jiki.v12i2.729

Abstract

This paper proposes the integration of AHP and TOPSIS to generate the ranking results of culinary recommendation for a group of users to provide better recommendation results. Formerly, Group Decision Support System (GDSS) for culinary recommendations has been developed with the TOPSIS method. TOPSIS has low algorithm complexity, so it is suitable to be applied in mobile devices. However, GDSS with TOPSIS has its disadvantages, TOPSIS have not been able to facilitate the preferences of each user inside a group so the recommendation result always consist only on dominant user. TOPSIS method produces unchanging rankings, because this method recommends a food menu based on the 1 dominant user so that the ranking is always consistent. Meanwhile, this study aims to integrate AHP for weighting criteria from each user and TOPSIS for ranking culinary recommendations. Based on rank consistency testing results that conducted in 6 different user groups, unlike the previous research, AHP-TOPSIS shows inconsistency ranking, which means that changes in user preferences affect the recommendation results that are generated by application. The AHP-TOPSIS method proved can be accommodated the computation of various preferences of each user in GDSS culinary recommendation
IMAGE SPLICING DETECTION BASED ON DEMOSAICKING AND WAVELET TRANSFORMATION Endina Putri Purwandari
Jurnal Ilmu Komputer dan Informasi Vol 8, No 1 (2015): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)
Publisher : Faculty of Computer Science - Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (467.076 KB) | DOI: 10.21609/jiki.v8i1.281

Abstract

Image splicing is a form of digital image manipulation by combining two or more image into a new image. The application was developed through a passive approach using demosaicking and wavelet transformation method. This research purposed a method to implement the demosaicking and wavelet transform for digital image forgery detection with a passive approach. This research shows that (1) demosaicking can be used as a comparison image in forgery detection; (2) the application of demosaicking and wavelet transformation can improve the quality of the input image (3) demosaicking and wavelet algorithm are able to estimate whether the input image is real or fake image with a passive approach and estimate the manipulation area from the input image.
EKSTRAKSI FITUR FRAKTAL DAN MORFOLOGI SINYAL ELEKTROKARDIOGRAM DAN PEMANFAATANNYA DALAM KLASIFIKASI DEEP SLEEP Aniati Murni Arymurthy; Edward Citrahadi; Tieta Antaresti
Jurnal Ilmu Komputer dan Informasi Vol 4, No 2 (2011): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)
Publisher : Faculty of Computer Science - Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (821.551 KB) | DOI: 10.21609/jiki.v4i2.169

Abstract

Detak jantung manusia dapat memberikan informasi yang berguna tentang aktivitas yang terjadi di dalam tubuh. Salah satu informasi yang dapat diperoleh dari rekaman detak jantung atau elektrokardiogram adalah tingkat keterlelapan tidur seseorang (sleep stages). Dari sinyal elektrokardiogram seseorang, tingkat keterlelapan tidurnya dapat dikenali dengan terlebih dahulu mengekstrak fitur yang merepresentasikan sinyal elektrokardiogram tersebut secara keseluruhan. Ekstraksi dilakukan agar dimensi data dapat tereduksi sehingga proses klasifikasi dapat lebih mudah dilakukan. Penelitian ini melakukan ekstraksi fitur fraktal dan morfologi dari sinyal elektrokardiogram yang diperoleh dari PhysioNet. Sebelum melakukan ekstraksi fitur morfologi dari sinyal elektrokardiogram, terlebih dahulu dilakukan “Wavelet Denoising” untuk menghilangkan noise yang terdapat pada sinyal. Human heart rate can provide useful information about the activities that occur in the body. One of information which may be obtained from recording the heart rate or electrocardiogram is commonly called a person's level of deep sleep (sleep stages). From a person's electrocardiogram signal, the level of deep sleep recognizable by extracting features that represent the electrocardiogram signal as a whole. Extraction is done so that the dimension of the data can be reduced so that the classification process can be more easily done. This study aims to extract fractal features and morphology of the electrocardiogram signal obtained from PhysioNet. Prior to the extraction of morphological features of the electrocardiogram signal, first performed “Wavelet Denoising” to remove the noise contained in the signal.
PARAMETER SIGMOID TRANSFORM CONTRAST ENHANCEMENT FOR DENTAL RADIOGRAPH CLASSIFICATION AND NUMBERING SYSTEM Andi Baso Kaswar; Saprina Mamase; Saiful Bahri Musa; Ahmad Mustofa Hadi; Anny Yuniarti; Agus Zainal Arifin
Jurnal Ilmu Komputer dan Informasi Vol 8, No 2 (2015): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)
Publisher : Faculty of Computer Science - Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (609.272 KB) | DOI: 10.21609/jiki.v8i2.303

Abstract

Dental record is a method that is used to identify a person. The identification process needs a system that could recognize each individual tooth automatically. The similar intensity level between the teeth and the gums is one of the main problem in tooth identification in a dental radiograph. The intensity problem could influence the segmentation process of the system. In this paper, we proposed a new contrast enhancement by using parameter sigmoid transform to increase the segmentation accuracy. There are five main steps in this method. The first step is to fix the contrast of the image with the proposed method. The next steps are to segment the teeth using horizontal and vertical integral projection, feature extraction, and classification using Support Vector Machine (SVM). The last step is teeth numbering. The experiment result using the proposed method have an accuracy rate of 88% for classification and 73% for teeth numbering.
LOCAL LINE BINARY PATTERN FOR FEATURE EXTRACTION ON PALM VEIN RECOGNITION Jayanti Yusmah Sari; Chastine Fatichah; Nanik Suciati
Jurnal Ilmu Komputer dan Informasi Vol 8, No 2 (2015): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)
Publisher : Faculty of Computer Science - Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (748.614 KB) | DOI: 10.21609/jiki.v8i2.309

Abstract

In recent years, palm vein recognition has been studied to overcome problems in conventional systems in biometrics technology (finger print, face, and iris). Those problems in biometrics includes convenience and performance. However, due to the clarity of the palm vein image, the veins could not be segmented properly. To overcome this problem, we propose a palm vein recognition system using Local Line Binary Pattern (LLBP) method that can extract robust features from the palm vein images that has unclear veins. LLBP is an advanced method of Local Binary Pattern (LBP), a texture descriptor based on the gray level comparison of a neighborhood of pixels. There are four major steps in this paper, Region of Interest (ROI) detection, image preprocessing, features extraction using LLBP method, and matching using Fuzzy k-NN classifier. The proposed method was applied on the CASIA Multi-Spectral Image Database. Experimental results showed that the proposed method using LLBP has a good performance with recognition accuracy of 97.3%. In the future, experiments will be conducted to observe which parameter that could affect processing time and recognition accuracy of LLBP is needed
TENDENCY OF PLAYERS IS TRIAL AND ERROR: CASE STUDY OF COGNITIVE CLASSIFICATION IN THE COGNITIVE SKILL GAMES Moh. Aries Syufagi; Mauridhi Hery Purnomo; Mochamad Hariadi
Jurnal Ilmu Komputer dan Informasi Vol 5, No 1 (2012): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)
Publisher : Faculty of Computer Science - Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (975.744 KB) | DOI: 10.21609/jiki.v5i1.184

Abstract

To assess the cognitive level of player ability is difficult; many instruments are potentially biased, unreliable, and invalid test. Whereas, in serious game is important to know the cognitive level. If the cognitive level can be measured well, the mastery learning can be achieved. Mastery learning is the core of the learning process in serious game. To classify the cognitive level of players, researchers propose a Cognitive Skill Game (CSG). CSG improves this cognitive concept to monitor how players interact with the game. This game employs Learning Vector Quantization (LVQ) for optimizing the cognitive skill input classification of the player. Training data in LVQ use data observation from the teacher. Populations of cognitive skill classification in this research are pupils when playing the game. Mostly players cognitive skill game have cognitive skill category are Trial and Error. Some of them have Expert category, and a few included in the group carefully. Thus, the general level of skill of the player is still low. Untuk menilai tingkat kognitif dari kemampuan pemain sangatlah sulit; banyak instrumen yang berpotensi bias, tidak dapat diandalkan, dan merupakan tes yang tidak valid. Padahal, dalam serious game penting untuk mengetahui tingkat kognitif. Jika tingkat kognitif dapat diukur dengan baik, penguasaan pembelajaran dapat dicapai. Penguasaan belajar adalah inti dari proses belajar dalam serious game. Untuk mengklasifikasikan tingkat kognitif pemain, kami mengusulkan Cognitive Skill Game (CSG). CSG meningkatkan konsep kognitif untuk memantau bagaimana pemain berinteraksi dengan permainan. Permainan ini menggunakan Learning Vector Quantization (LVQ) untuk mengoptimalkan input klasifikasi keterampilan kognitif pemain. Data trining dalam observasi LVQ menggunakan data dari guru. Populasi klasifikasi keterampilan kognitif dalam penelitian ini adalah siswa saat memainkan permainan. Sebagian besar pemain CSG berkategori keterampilan kognitif adalah coba-coba. Beberapa dari mereka memiliki kategori Ahli, dan sedikit yang termasuk dalam kelompok hati-hati. Dengan demikian, secara umum kemampuan pemain masih rendah.
ELECTROCARDIOGRAM ARRHYTHMIA CLASSIFICATION SYSTEM USING SUPPORT VECTOR MACHINE BASED FUZZY LOGIC Sugiyanto Sugiyanto; Tutuk Indriyani; Muhammad Heru Firmansyah
Jurnal Ilmu Komputer dan Informasi Vol 9, No 1 (2016): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)
Publisher : Faculty of Computer Science - Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (248.17 KB) | DOI: 10.21609/jiki.v9i1.364

Abstract

Arrhythmia is a cardiovascular disease that can be diagnosed by doctors using an electrocardiogram (ECG). The information contained on the ECG is used by doctors to analyze the electrical activity of the heart and determine the type of arrhythmia suffered by the patient. In this study, ECG arrhythmia classification process was performed using Support Vector Machine based fuzzy logic. In the proposed method, fuzzy membership functions are used to cope with data that are not classifiable in the method of Support Vector Machine (SVM) one-against-one. An early stage of the data processing is the baseline wander removal process on the original ECG signal using Transformation Wavelet Discrete (TWD). Afterwards then the ECG signal is cleaned from the baseline wander segmented into units beat. The next stage is to look for six features of the beat. Every single beat is classified using SVM method based fuzzy logic. Results from this study show that ECG arrhythmia classification using proposed method (SVM based fuzzy logic) gives better results than original SVM method. ECG arrhythmia classification using SVM method based fuzzy logic forms an average value of accuracy level, sensitivity level, and specificity level of 93.5%, 93.5%, and 98.7% respectively. ECG arrhythmia classification using only SVM method forms an average value accuracy level, sensitivity level, and specificity level of 91.83%, 91.83%, and 98.36% respectively.
BEAGLEBOARD EMBEDDED SYSTEM FOR ADAPTIVE TRAFFIC LIGHT CONTROL SYSTEM WITH CAMERA SENSOR Muhammad Febrian Rachmadi; F Al Afif; M Anwar Ma'sum; M Fajar; A Wibowo
Jurnal Ilmu Komputer dan Informasi Vol 5, No 2 (2012): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)
Publisher : Faculty of Computer Science - Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1268.713 KB) | DOI: 10.21609/jiki.v5i2.190

Abstract

Traffic is one of the most important aspects in human daily life because traffic affects smoothness of capital flows, logistics, and other community activities. Without appropriate traffic light control system, possibility of traffic congestion will be very high and hinder people’s life in urban areas. Adaptive traffic light control system can be used to solve traffic congestions in an intersection because it can adaptively change the durations of green light each lane in an intersection depend on traffic density. The proposed adaptive traffic light control system prototype uses Beagleboard-xM, CCTV camera, and AVR microcontrollers. We use computer vision technique to obtain information on traffic density combining Viola-Jones method with Kalman Filter method. To calculate traffic light time of each traffic light in intersection, we use Distributed Constraint Satisfaction Problem (DCSP). From implementations and experiments results, we conclude that BeagleBoard-xM can be used as main engine of adaptive traffic light control system with 91.735% average counting rate. Lalu intas adalah salah satu aspek yang paling penting dalam kehidupan sehari-hari manusia karena lalu lintas memengaruhi kelancaran arus modal, logistik, dan kegiatan masyarakat lainnya. Tanpa sistem kontrol lampu lalu lintas yang memadai, kemungkinan kemacetan lalu lintas akan sangat tinggi dan menghambat kehidupan masyarakat di perkotaan. Sistem kontrol lampu lalu lintas adaptif dapat digunakan untuk memecahkan kemacetan lalu lintas di persimpangan karena dapat mengubah durasi lampu hijau di setiap persimpangan jalan tergantung pada kepadatan lalu lintas. Prototipe sistem kontrol lampu lalu lintas menggunakan BeagleBoard-XM, kamera CCTV, dan mikrokontroler AVR. Peneliti menggunakan teknik computer vision untuk mendapatkan informasi tentang kepadatan lalu lintas dengan menggabungkan metode Viola-Jones dan metode Filter Kalman. Untuk menghitung waktu setiap lampu lalu lintas di persimpangan, peneliti menggunakan Distributed Constraint Satisfaction Problem (DCSP). Dari hasil implementasi dan percobaan dapat disimpulkan bahwa BeagleBoard-XM dapat digunakan sebagai mesin utama sistem kontrol lampu lalu lintas adaptif dengan tingkat akurasi penghitungan rata-rata sebesar 91.735%.
FEATURE SELECTION METHODS BASED ON MUTUAL INFORMATION FOR CLASSIFYING HETEROGENEOUS FEATURES Ratri Enggar Pawening; Tio Darmawan; Rizqa Raaiqa Bintana; Agus Zainal Arifin; Darlis Herumurti
Jurnal Ilmu Komputer dan Informasi Vol 9, No 2 (2016): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)
Publisher : Faculty of Computer Science - Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (283.816 KB) | DOI: 10.21609/jiki.v9i2.384

Abstract

Datasets with heterogeneous features can affect feature selection results that are not appropriate because it is difficult to evaluate heterogeneous features concurrently. Feature transformation (FT) is another way to handle heterogeneous features subset selection. The results of transformation from non-numerical into numerical features may produce redundancy to the original numerical features. In this paper, we propose a method to select feature subset based on mutual information (MI) for classifying heterogeneous features. We use unsupervised feature transformation (UFT) methods and joint mutual information maximation (JMIM) methods. UFT methods is used to transform non-numerical features into numerical features. JMIM methods is used to select feature subset with a consideration of the class label. The transformed and the original features are combined entirely, then determine features subset by using JMIM methods, and classify them using support vector machine (SVM) algorithm. The classification accuracy are measured for any number of selected feature subset and compared between UFT-JMIM methods and Dummy-JMIM methods. The average classification accuracy for all experiments in this study that can be achieved by UFT-JMIM methods is about 84.47% and Dummy-JMIM methods is about 84.24%. This result shows that UFT-JMIM methods can minimize information loss between transformed and original features, and select feature subset to avoid redundant and irrelevant features.

Page 9 of 25 | Total Record : 247


Filter by Year

2009 2025


Filter By Issues
All Issue Vol. 18 No. 2 (2025): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Informatio Vol. 18 No. 1 (2025): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Informatio Vol. 17 No. 2 (2024): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Informatio Vol. 17 No. 1 (2024): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Informatio Vol. 16 No. 2 (2023): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Informatio Vol. 16 No. 1 (2023): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Informatio Vol. 15 No. 2 (2022): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Informatio Vol. 15 No. 1 (2022): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Informatio Vol 14, No 2 (2021): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information Vol 14, No 1 (2021): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information Vol 13, No 2 (2020): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information Vol 13, No 1 (2020): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information Vol 12, No 2 (2019): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information Vol 12, No 1 (2019): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information Vol 11, No 2 (2018): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information Vol 11, No 1 (2018): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information Vol 10, No 2 (2017): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information Vol 10, No 1 (2017): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information Vol 9, No 2 (2016): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information) Vol 9, No 1 (2016): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information) Vol 8, No 2 (2015): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information) Vol 8, No 1 (2015): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information) Vol 7, No 2 (2014): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information) Vol 7, No 1 (2014): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information) Vol 6, No 2 (2013): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information) Vol 6, No 1 (2013): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information) Vol 5, No 2 (2012): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information) Vol 5, No 1 (2012): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information) Vol 4, No 2 (2011): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information) Vol 4, No 1 (2011): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information) Vol 3, No 2 (2010): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information) Vol 3, No 1 (2010): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information) Vol 2, No 2 (2009): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information) Vol 2, No 1 (2009): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information) More Issue