cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota surabaya,
Jawa timur
INDONESIA
EMITTER International Journal of Engineering Technology
ISSN : 2355391x     EISSN : -     DOI : -
Core Subject : Science,
EMITTER International Journal of Engineering Technology is a BI-ANNUAL journal published by Politeknik Elektronika Negeri Surabaya (PENS). It aims to encourage initiatives, to share new ideas, and to publish high-quality articles in the field of engineering technology and available to everybody at no cost. It stimulates researchers to explore their ideas and enhance their innovations in the scientific publication on engineering technology. EMITTER International Journal of Engineering Technology primarily focuses on analyzing, applying, implementing and improving existing and emerging technologies and is aimed to the application of engineering principles and the implementation of technological advances for the benefit of humanity.
Arjuna Subject : -
Articles 436 Documents
Optimal Design and Cost Analysis of Hybrid Autonomous Distributed Generation System for a Critical Load Shereefdeen Oladapo Sanni; Abdulkadir AWAISU; Taiwo Samuel AJAYI
EMITTER International Journal of Engineering Technology Vol 6 No 2 (2018)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (432.266 KB) | DOI: 10.24003/emitter.v6i2.302

Abstract

One of the universal targets of the United Nations Sustainable Development Goals is affordable and clean energy. It is on this premise that this study presents the integration of PV-wind distributed generation system into an existing diesel generator powered water treatment plant in a suburban town of Wudil, Nigeria. Inadequate and epileptic supply from the grid caused the dependence of the plant on the generator. The optimal design was determined using the Hybrid Optimization of Multiple Energy Resources (HOMER) software developed by the National Renewable Energy Laboratory. Simulation results produce an optimal hybrid system which includes photovoltaic (PV) panels, wind turbines, converter, batteries and a generator with a cost of energy of $0.26 at a renewable fraction of 95%. An analysis also demonstrates that implementing this design will result in low and fairly constant fuel price in the lifecycle of the project. This will, in turn, support sustainable economic development of communities served by the water treatment plant.
Study on Thermoelectric Cooler Driven by Solar Energy in Medan City Tulus Burhanuddin Sitorus; Zulkifli Lubis; Farida Ariani; Ferry Sembiring
EMITTER International Journal of Engineering Technology Vol 6 No 2 (2018)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1352.369 KB) | DOI: 10.24003/emitter.v6i2.303

Abstract

The primary purpose of this study is to investigate the performance of thermoelectric cooler driven by solar energy in Medan city, Indonesia. This cooler able to use in a remote area where electricity is still not available. The cooler could be used to store beverage that must be stored at low temperatures to maintain the freshness such as drink cup. The solar thermoelectric cooler is based on the principles of a thermoelectric module or Peltier effect to create a hot side and a cold side. The cold side of the thermoelectric module is utilized for cooling purposes to the cooling space. The heat from the hot side of the module is rejected to ambient surroundings by using heat sinks and fans. The solar thermoelectric cooler was experimentally tested for the cooling purpose. Experimental results showed that the solar thermoelectric cooler could reduce the temperature of the drink cup from 26oC to 15oC in approximately 40 min. The maximum COP of the cooling system during the experiment was calculated and found to be about 0.356. The effect of weather conditions on the COP value was about 85.90%.
Real Performance Evaluation On MQTT and COAP Protocol in Ubiquitous Network Robot Platform (UNRPF) for Disaster Multi-robot Communication Muhammad Ikrar Yamin; Son Kuswadi; Sritrusta Sukaridhoto
EMITTER International Journal of Engineering Technology Vol 6 No 2 (2018)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (808.632 KB) | DOI: 10.24003/emitter.v6i2.305

Abstract

Disaster multi-robot has a significant role in a disaster area to do many tasks like detection of fire, search and rescue of victims, etc. It needs to build good communication between the operator and multi-robot and among multi-robot themselves to perform their tasks quickly and efficiently. This relates with the queue message protocol system. In this research, we implemented the queue message protocol on mesh topology and integrated it on the robot platform. Recently, development of IoT (Internet of Things) Technology causes development of communication protocol. MQTT and CoAP are among the communication protocols used for IoT needs.  Both  protocols performance were compared when  used and implemented into disaster multi-robot. We also integrated MQTT protocol and robot  platform python based (UNR-PF). The result shows that MQTT protocol is easier to be  implemented on to disaster multi-robot platform (UNR-PF) on mesh topology than CoAP, and that data transfer rate of MQTT protocol has data transfer rate higher than CoAP.
Comparison of Adaptive Ant Colony Optimization for Image Edge Detection of Leaves Bone Structure Febri Liantoni; Rifki Indra Perwira; Daniel Silli Bataona
EMITTER International Journal of Engineering Technology Vol 6 No 2 (2018)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (455.566 KB) | DOI: 10.24003/emitter.v6i2.306

Abstract

Leaf bone structure has a characteristic that can be used as a reference in digital image processing. One form of digital image processing is image edge detection. Edge detection is the process of extracting edge information from an image. In this research, Adaptive Ant Colony Optimization algorithm is proposed for edge image detection of leaf bone structure. The Adaptive Ant Colony Optimization method is a modification of Ant Colony Optimization, in which the initial an ant dissemination process is no longer random, but it is done by a pixel placement process that allows for an edge based on the value of the image gradient. As a comparison also performed edge detection using Robert and Sobel method. Based on the experiments performed, Adaptive Ant Colony Optimization algorithm is capable of producing more detailed image edge detection and has thicker borders than others. Keywords: edge detection, ant colony optimization, robert, sobel
Assembly Sequence Planning by Probabilistic Tree Transformation Takeshi Murayama; Yuichi Mine; Hiroshi Fujinaka; Toru Eguchi
EMITTER International Journal of Engineering Technology Vol 6 No 2 (2018)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (269.235 KB) | DOI: 10.24003/emitter.v6i2.308

Abstract

Various types of computer systems including CAD/CAM systems have been introduced in machine industry. Some of the systems can handle assembly sequence planning, however it requires long time for planning. This paper proposes a method of generating assembly sequences efficiently. This method extracts some parts and/or subassemblies whose possibilities of being removed from a product are strong, and tests whether they can be removed without any geometric interference. By performing these operations repeatedly, the method generates a disassembly sequence of the product, and obtains an assembly sequence by reversing it. The extraction of some parts and/or subassemblies is performed, based on probabilistic tree transformation. The authors present a calculation example by using a software tool integrated with a CAD system.
Simulation design of an Intelligent system for Automotive transmission Gearbox Based on FPGA Azzad Bader SAEED
EMITTER International Journal of Engineering Technology Vol 6 No 2 (2018)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (930.128 KB) | DOI: 10.24003/emitter.v6i2.310

Abstract

In this paper, an artificial  intelligent system has been designed, realized, and downloaded into  FPGA (Field Programmable Gate Array), which is used to control five speed ratio steps ( 1,2,3,4,5) of an electrically controlled type of  automotive transmission gearbox of a vehicle, the first speed ratio step (1) is characterized by the  highest torque, a lowest velocity, while, the  fifth step is characterized by the lowest torque, and highest velocity.The Back-propagation neural network has been used as the intelligent system for the proposed system. The proposed neural network is composed from   eight neurons in the input layer, five neurons in the hidden layer, and five neurons in the output layer. For real downloading into the FPGA, Satlins and Satlin linear activation function has been used for the hidden and output layers respectively. The training function Trainlm ( Levenberg-Marqurdt training) has been used as a learning method for the proposed neural network, which it has a powerful algorithm. The proposed simulation system has been designed and downloaded into the FPGA using MATLAB and ISE Design Suit software packages.
Design and Analysis of the Voltage Controller for the Non Isolated Boost DC-DC Convertor Mohammad Reza Modabbernia; Alireza Akoushideh; Seyed Yaser Fakhrmoosavi
EMITTER International Journal of Engineering Technology Vol 7 No 1 (2019)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (822.159 KB) | DOI: 10.24003/emitter.v7i1.312

Abstract

In this paper, a controller has been presented by the root locus method based on the state space average model of the boost switching regulator with all of the converter’s parameters and uncertainties. In this model, the load current is unknown and the inductor, capacitor, diode and active switch are non ideal and have an on-state resistance. Furthermore, an on-state voltage drop has been considered for diode and active switch. By neglecting the load current and assuming the ideal elements the simplified model of the regulator has been caddied out. By these complete and simplified models, a step by step method has been proposed to design a single input single output (SISO), second order controller based on roots locus method. In this regard the controller's electronic circuit has been introduced by operational amplifiers. At the end, by simulation of the complete closed-loop system in MATLAB Simulink environment and comparing its results by the results of the regulator and controller circuits in PLECS, the accuracy of the designed controller performance has been shown.
Focused Time Delay Neural Network For Tuning Automatic Voltage Regulator Widi Aribowo
EMITTER International Journal of Engineering Technology Vol 7 No 1 (2019)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (364.517 KB) | DOI: 10.24003/emitter.v7i1.315

Abstract

This paper proposes a novel controller for automatic voltage regulator (AVR) system. The controller is used Focused Time Delay Neural Network (FTDNN). It does not require dynamic backpropagation to compute the network gradient. FTDNN AVR can train network faster than other dynamic networks. Simulation was performed to compare load angle (load angle) and Speed. The performance of the system with FTDNN-AVR has compared with a Conventional AVR (C-AVR) and RNN AVR. Simulations in Matlab/Simulink show the effectiveness of FTDNN-AVR design, and superior robust performance with different cases.
Collaboration FMADM And K-Means Clustering To Determine The Activity Proposal In Operational Management Activity Rolly Maulana Awangga; Syafrial Fachri Pane; Khaera Tunnisa
EMITTER International Journal of Engineering Technology Vol 7 No 1 (2019)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (209.522 KB) | DOI: 10.24003/emitter.v7i1.317

Abstract

Indonesian government agencies under the Ministry of Energy and Mineral Resources still use manual methods in determining and selecting proposals for operational activities to be carried out. This study uses the Decision Support System (DSS) method, namely Fuzzy Multiple Attribute Decision Decision (Fmadm) and K-Means Clustering method in managing Operational Plan activities. Fmadm to select the best alternative from a number of alternatives, alternatives from this study proposed activity proposals, then ranking to determine the optimal alternative. The K-Means Clustering Method to obtain cluster values for alternatives on the criteria for activity dates, types of activities, and activity ceilings. The last iteration of the Euclidian distance calculation data on k-means shows that alternatives that have the smallest centroid value are important proposal criteria and the largest centroid value is an insignificant proposal criteria. The results of the collaboration of the Fmadm and K-Means Clustering methods show the optimal ranking of activities (proposal activities) and the centroid value of each alternative.
Performance Analysis of Specification Computer and Mobile with Implementation Tawaf Virtual Reality using A* Algorithm and RVO System Moh. Zikky; M. Jainal Arifin; Kholid Fathoni; Agus Zainal Arifin
EMITTER International Journal of Engineering Technology Vol 7 No 1 (2019)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (587.902 KB) | DOI: 10.24003/emitter.v7i1.321

Abstract

High-Performance Computer (HPC) is computer systems that are built to be able to solve computational loads. HPC can provide a high-performance technology and short the computing processes timing. This technology was often used in large-scale industries and several activities that require high-level computing, such as rendering virtual reality technology. In this research, we provide Tawaf’s Virtual Reality with 1000 of Pilgrims and realistic surroundings of Masjidil-Haram as the interactive and immersive simulation technology by imitating them with 3D models. Thus, the main purpose of this study is to calculate and to understand the processing time of its Virtual Reality with the implementation of tawaf activities using various platforms; such as computer and Android smartphone. The results showed that the outer-line or outer rotation of Kaa’bah mostly consumes minimum times although he must pass the longer distance than the closer one.  It happened because the agent with the closer area to Kaabah is facing the crowded peoples. It means an obstacle has the more impact than the distances in this case.