Claim Missing Document
Check
Articles

The Classification of “Program Sembako” recipients in Payobasung West Sumatra based on the K-nearest neighbors classifier HAZMIRA YOZZA; NINDI MAULA AZIZAH; LYRA YULIANTI; IZZATI RAHMI
Jurnal Natural Volume 23 Number 2, June 2023
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24815/jn.v23i2.29738

Abstract

The "Sembako Program" is a program carried out by the Indonesian government to improve the welfare of low-income communities. The purposes of this study are: (a) to determine the classification of households that deserve to receive basic-food assistance in Koto Panjang Payobasung, West Sumatra, using the KNN classifier and (b) to determine the optimal number of nearest neighbors used in the classification process. The measure of proximity between objects used is the Gower dissimilarity coefficient. This research used primary data consisting of 175 households collected purposively in a survey conducted on all households in Payobasung.  The optimal K value is determined by implementing a 5-fold cross-validation procedure. The result showed that the best classification process is when K = 3 nearest neighbors are used since it produces the highest accuracy coefficient and Mattews correlation coefficient (MCC). Therefore, for further work, in deciding the eligibility of a household to receive the Sembako Program in Payobasung, KNN can be used by considering its 3 nearest neighbors
On Ramsey (mK2,bPn)-minimal Graphs Nadia Nadia; Lyra Yulianti; Fawwaz Fakhrurrozi Hadiputra
Indonesian Journal of Combinatorics Vol 7, No 1 (2023)
Publisher : Indonesian Combinatorial Society (InaCombS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/ijc.2023.7.1.2

Abstract

Let G and H be two given graphs. The notation F→(G,H) means that any red-blue coloring on the edges of F will create either a red subgraph G or a blue subgraph H in F. A graph F is a Ramsey (G,H)-minimal graph if F satisfies two conditions: (1) F→(G,H), and (2) (F−e) ⇸ (G,H) for every e ∈ E(F). Denote ℜ(G,H) as the set of all (G,H)-minimal graphs. In this paper we prove that a tree T is not in ℜ(mK2,bPn) if it has a diameter of at least n(b+m−1)−1 for m,n,b≥2, furthermore we show that (b+m−1)Pn ∈ ℜ(mK2,bPn) for every m,n,b≥2. We also prove that for n≥3, a cycle on k vertices is in ℜ(mK2,bPn) if and only if k ∈ [n(b+m−2)+1, n(b+m−1)−1].
Dimensi Metrik Amalgamasi Graf Theta Des Welyyanti; Alifaziz Arsyad; Lyra Yulianti
Limits: Journal of Mathematics and Its Applications Vol 20, No 2 (2023)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/limits.v20i2.16359

Abstract

Misalkan 𝐺 = (𝑉, 𝐸) adalah suatu graf terhubung dengan himpunan titik 𝑉(𝐺) dan himpunan sisi 𝐸(𝐺). Misalkan 𝑢 dan 𝑣 adalah titik-titik dalam graf terhubung 𝐺, panjang lintasan terpendek dari 𝑢 ke 𝑣 pada 𝐺 dinotasikan 𝑑(𝑢, 𝑣). Jika  suatu himpunan terurut dari titik-titik dalam graf terhubung 𝐺 dan titik 𝑣  𝑉(𝐺), maka representasi dari titik 𝑣 terhadap , dinotasikan 𝑟(𝑣| ) adalah . Jika 𝑟(𝑣| ) untuk setiap titik 𝑣  𝑉(𝐺) berbeda, maka  dinamakan himpunan pembeda dari 𝐺. Himpunan pembeda dengan kardinalitas minimum dinamakan himpunan pembeda minimum, dan kardinalitas dari himpunan pembeda minimum dinamakan dimensi metrik (metric dimension) dari 𝐺, dinotasikan dim (𝐺). Pada penelitian ini dibahas tentang dimensi metrik amalgamasi graf Theta.
Dimensi Metrik Graf Buckminsterfullerene-Subdivisi dan Buckminsterfullerene-Star Lyra Yulianti; Laila Hidayati; Des Welyyanti
Limits: Journal of Mathematics and Its Applications Vol 20, No 2 (2023)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/limits.v20i2.15397

Abstract

Misalkan terdapat graf Buckminsterfullerene  dengan 60 titik. Graf Buckminsterfullerene-subdivisi, dinotasikan , , dikonstruksi dengan cara melakukan operasi subdivisi terhadap satu sisi tertentu di , yaitu penyisipan sebanyak  titik di sisi tersebut. Selanjutnya, Graf Buckminsterfullerene-star, dinotasikan , dikonstruksi dengan cara mengidentifikasi masing-masing satu titik daun dari lima graf bintang  dengan titik yang bersesuaian di Pada artikel ini akan ditentukan dimensi metrik dari dan  untuk .
Bilangan Kromatik Lokasi Graf Helm Hm Dengan 3 ≤ m ≤ 9 Kelson Novrianus Lessya; Des Welyyanti; Lyra Yulianti
Jurnal Matematika UNAND Vol 12, No 3 (2023)
Publisher : Departemen Matematika dan Sains Data FMIPA Universitas Andalas Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jmua.12.3.222-228.2023

Abstract

Misalkan G = (V, E) adalah graf terhubung dan c suatu k−pewarnaan dari G. Kelas warna pada G adalah himpunan titik-titik yang berwarna i, dinotasikan dengan Si untuk 1 ≤ i ≤ k. Misalkan Π = {S1, S2. · · · , Sk} merupakan partisi terurut dari V (G) kedalam kelas-kelas warna yang saling bebas. Berdasarkan pewarnaan titik, maka representasi titik v terhadap Π disebut kode warna dari v, dinotasikan dengan cΠ(v) dari suatu titik v ∈ V (G) didefinisikan sebagai k−pasang terurut, yaitu: cΠ(v) = (d(v, S1), d(v, S2), · · · , d(v, Sk)) dengan d(v, Si) = min{d(v, x)|x ∈ Si} untuk 1 ≤ i ≤ k. Jika setiap titik pada G memiliki kode warna yang berbeda terhadap Π, maka c disebut pewarnaan lokasi. Banyaknya warna minimum yang digunakan disebut bilangan kromatik lokasi, dinotasikan dengan χL(G). Pada tulisan ini akan dibahas bilangan kromatik lokasi graf helm Hm dengan 3 ≤ m ≤ 9.
Dimensi Metrik Dari Graf Palem mellany mellany; LYRA YULIANTI; DES WELYYANTI
Jurnal Matematika UNAND Vol 12, No 4 (2023)
Publisher : Departemen Matematika dan Sains Data FMIPA Universitas Andalas Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jmua.12.4.276-282.2023

Abstract

Penelitian ini bertujuan mencari dimensi metrik dari garf palem CkPlSm, untuk k ≥ 3,l ≥ 2 dan m ≥ 2. Graf Palem CkPlSm merupakan graf yang dibangun oleh tiga graf, yaitu Graf Lingkaran Ck, Graf Lintasan Pl , dan Graf Bintang Sm. Penelitian ini diperoleh bahwa dimensi metrik graf palem adalah m, dim(H) = m.
The Classification of “Program Sembako” recipients in Payobasung West Sumatra based on the K-nearest neighbors classifier HAZMIRA YOZZA; NINDI MAULA AZIZAH; LYRA YULIANTI; IZZATI RAHMI
Jurnal Natural Volume 23 Number 2, June 2023
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24815/jn.v23i2.29738

Abstract

The "Sembako Program" is a program carried out by the Indonesian government to improve the welfare of low-income communities. The purposes of this study are: (a) to determine the classification of households that deserve to receive basic-food assistance in Koto Panjang Payobasung, West Sumatra, using the KNN classifier and (b) to determine the optimal number of nearest neighbors used in the classification process. The measure of proximity between objects used is the Gower dissimilarity coefficient. This research used primary data consisting of 175 households collected purposively in a survey conducted on all households in Payobasung.  The optimal K value is determined by implementing a 5-fold cross-validation procedure. The result showed that the best classification process is when K = 3 nearest neighbors are used since it produces the highest accuracy coefficient and Mattews correlation coefficient (MCC). Therefore, for further work, in deciding the eligibility of a household to receive the Sembako Program in Payobasung, KNN can be used by considering its 3 nearest neighbors
The Bilangan Kromatik Lokasi Gabungan Graf Palem Nurinsani, Aisyah; Welyyanti, Des; Yulianti, Lyra
JMPM: Jurnal Matematika dan Pendidikan Matematika Vol 9 No 1 (2024): March - August 2024
Publisher : Prodi Pendidikan Matematika Universitas Pesantren Tinggi Darul Ulum Jombang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26594/jmpm.v9i1.4828

Abstract

Vertex coloring of a graph is the coloring of vertices such that two adjacent vertices have different colors. The color code of a vertex is the distance from the vertex to the partition of the existing color set. A graph has a locating coloring if each vertex has a different color code. A palm graph is a graph constructed from a cycle graph, path graph, and star graph. A disjoint union of palm graphs is a disconnected graph with palm graphs as its components. The locating chromatic number of graph is the minimum colors of the graph to have locating coloring with k colors. In this paper, we determine the locating chromatic number of a disjoint union of palm graph.
On locating-chromatic number of helm graph H_m FOR 10m28 WELYYANTI, DES; SUTANTO, DASA; YULIANTI, LYRA
Jurnal Natural Volume 24 Number 3, October 2024
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24815/jn.v24i3.33190

Abstract

Let G = (V,E) be a connected graph and c be a k-coloring of G. The color class S_i of G is a set of vertices given color i, for 1 i k. Let = {S_1,S_2,,S_k} be an ordered partition of V(G). The color code of a vertex v $in$ (element) V(G) is defined as the ordered k--tuplec_ (v)=(d(v,S_1),d(v,S_2),...,d(v,S_k)),where d(v,S_i) = min{d(v,x)| x $in$ (element) S_i} for 1 i k. If distinct vertices have distinct color codes, then c is called a locating-coloring of G. The locating-chromatic number _L (G) is the minimum number of colors in a locating-coloring of G. This paper discusses the locating-chromatic number of helm graph H_m for 10 m 28. Helm graph H_m is constructed by adding some leaves to the corresponding vertices of wheels W_m, for m 3.
Bilangan Kromatik Lokasi Amalgamasi Graf Theta Welyyanti, Des; Angryanof, Uthary Putri; Yulianti, Lyra
Limits: Journal of Mathematics and Its Applications Vol 21, No 3 (2024)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/limits.v21i3.21582

Abstract

Misalkan adalah suatu pewarnaan titik pada graf dimana , untuk dan yang bertetangga di . Kode warna dari adalah pasang terurut dimana untuk . Jika setiap titik memiliki kode warna yang berbeda, maka disebut pewarnaan lokasi dari . Banyaknya warna minimum yang digunakan untuk pewarnaan lokasi termasuk bilangan kromatik lokasi dari dan dinotasikan dengan Pada artikel ini akan dibahas mengenai bilangan kromatik lokasi amalgamasi graf theta.