Claim Missing Document
Check
Articles

Found 32 Documents
Search

PELATIHAN DASAR PYTHON UNTUK MENDUKUNG LITERASI PEMROGRAMAN DI SEKOLAH MENENGAH KEJURUAN PELITA PESAWARAN hartanto, budi; Fawaati, Teuku Muhammad; Fahurian, Fatimah; Yunita, Hilda Dwi; Zuhri, Khozainuz
Universal Raharja Community (URNITY Journal) Vol 5 No 2 (2025): URNITY (Universal Raharja Community)
Publisher : UNIVERSITAS RAHARJA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33050/urnity.v5i2.3613

Abstract

Pelatihan dasar Python menjadi langkah strategis untuk meningkatkan literasi pemrograman di kalangan pelajar Sekolah Menengah Kejuruan (SMK) sebagai persiapan menghadapi tantangan Revolusi Industri 4.0. Bahasa pemrograman Python dipilih karena sintaksisnya sederhana, fleksibel, dan banyak digunakan di berbagai bidang seperti data science, kecerdasan buatan (AI), dan Internet of Things (IoT). Program ini dirancang untuk memperkenalkan konsep pemrograman dasar kepada siswa SMK Pelita Pesawaran melalui pendekatan berbasis proyek. Materi pelatihan meliputi pengenalan sintaks dasar Python, implementasi logika pemrograman sederhana, hingga pembuatan aplikasi dasar berbasis data.Metode pelaksanaan terdiri atas pembelajaran teori secara daring dan praktik langsung melalui lokakarya tatap muka. Pelatihan ini bertujuan tidak hanya untuk meningkatkan pemahaman siswa tentang pemrograman, tetapi juga untuk memotivasi mereka agar dapat menerapkan Python dalam proyek inovatif di sekolah maupun dunia kerja. Hasil kegiatan menunjukkan peningkatan signifikan pada pemahaman siswa tentang pemrograman dan kemampuannya mengimplementasikan Python untuk menyelesaikan masalah nyata. Dengan dukungan dari pihak sekolah dan komunitas lokal, pelatihan ini diharapkan menjadi program berkelanjutan untuk mendukung pengembangan SDM yang siap bersaing di era digital. Basic Python training serves as a strategic step to enhance programming literacy among vocational high school (SMK) students, preparing them to face the challenges of the Fourth Industrial Revolution. Python was chosen due to its simple syntax, flexibility, and extensive applications in fields such as data science, artificial intelligence (AI), and the Internet of Things (IoT). This program is designed to introduce fundamental programming concepts to students of SMK Pelita Pesawaran through a project-based approach. The training materials include an introduction to Python syntax, implementation of basic programming logic, and the development of simple data-driven applications.The implementation method involves theoretical online learning and hands-on practice through in-person workshops. This training aims not only to enhance students' understanding of programming but also to motivate them to apply Python in innovative projects at school and in their future careers. Results from the activity demonstrated a significant improvement in students' programming comprehension and their ability to implement Python in solving real-world problems. With support from the school and the local community, this program is expected to become a sustainable initiative to foster the development of human resources ready to compete in the digital era.
Sentiment Analysis of Twitter Discussions About Lampung Robusta Coffee: A Comparative Study of Machine Learning Algorithms with SVM as The Optimal Model Yuniarthe, Yodhi; Syarif, Admi; Shofi, Imam Marzuki; Fatimah Fahurian
JURNAL TEKNIK INFORMATIKA Vol. 18 No. 2: JURNAL TEKNIK INFORMATIKA
Publisher : Department of Informatics, Universitas Islam Negeri Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jti.v18i2.41316

Abstract

Lampung Robusta coffee is an important commodity in Indonesia, particularly in terms of local economic potential and global recognition. However, public perception of this product on social media, particularly Twitter, remains underexplored. This study addresses the need for a deeper understanding of consumer sentiment towards Lampung Robusta coffee, which could inform branding and marketing strategies. To approach this issue, we used five supervised machine learning algorithms-KNN, Naive Bayes, SVM, Decision Tree, and Logistic Regression-to perform sentiment classification on a dataset of tweets containing relevant keywords. The dataset was pre-processed using standard natural language processing techniques, including tokenization, stopword removal, and TF-IDF feature extraction. The SVM achieved the best performance on the unbalanced dataset for all metrics, with high and consistent accuracy and F1 scores. Logistic regression followed closely with similarly strong and stable results. Therefore, SVM is recommended as the final model. These results suggest that machine learning approaches can effectively classify sentiment in social media discussions about regional agricultural products and that random forest may provide the most robust performance in this context