Claim Missing Document
Check
Articles

Found 18 Documents
Search

The Confidence Interval of the Estimator of the Periodic Intensity Function in the Presence of Power Function Trend on the Nonhomogeneous Poisson Process Maulidi, Ikhsan; Wibowo, Bonno Andri; Valentika, Nina; Syazali, Muhammad; Apriliani, Vina
CAUCHY Vol 7, No 1 (2021): CAUCHY: Jurnal Matematika Murni dan Aplikasi
Publisher : Mathematics Department, Maulana Malik Ibrahim State Islamic University of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/ca.v7i1.12848

Abstract

The nonhomogeneous Poisson process is one of the most widely applied stochastic processes. In this article, we provide a confidence interval of the intensity estimator in the presence of a periodic multiplied by trend power function. This estimator's confidence interval is an application of the formulation of the estimator asymptotic distribution that has been given in previous studies. In addition, constructive proof of the convergent in probability has been provided for all power functions.
Characterization of Thermal Waters Origin from the Back Arc Lampung Province, Indonesia: An Evaluation of Stable Isotopes, Major Elements, and Li/Cl Ratios Iqbal, Mochamad; Kusumasari, Brenda Ariesty; Atmapradhana, Tedi; Trinugraha, Afi Candra; Palupi, Endah Kinarya; Maulidi, Ikhsan
International Journal of Hydrological and Environmental for Sustainability Vol. 2 No. 1 (2023): International Journal of Hydrological and Environmental for Sustainability
Publisher : CV FOUNDAE

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58524/ijhes.v2i1.171

Abstract

This study reports chemical and isotope data from thermal water samples collected in the Natar area (back-arc Lampung province), Indonesia. Based on the geologic map, Lampung-Panjang Fault is the source of this thermal water appearance with Quaternary volcanic and metamorphic rock in the basement. It is located close to the Quaternary extinct volcano (Mount Betung) around 20 km to the southwest. Therefore, this study aims to provide information on geochemical characteristics and the origin of thermal waters in Natar's non-volcanic area. Variables such as stable isotopes, major, and Li/Cl ratios were analyzed. Furthermore, the thermal waters collected from a well in a different location have a moderate temperature ranging from 47°C to 54°C with 6.23 pH. Lithium and Chloride concentrations as well as Isotope δ18O and δD ranges from 0.02 mg/L to 0.04 mg/L, 5.19 mg/L to 46.12 mg/L, -5.26 ‰ to -2.65 ‰, and -5.26 ‰ to -2.65 ‰, respectively. The stable isotope showed that the thermal water samples have a shift value of ó18O similar to hydrothermal water. The result also has a positive correlation with the distribution of the Li/Cl ratio plotted close to the magmatic water. Consequently, the Natar hot springs may have formed due to the magmatic process of Mount Betung Quaternary with a lower temperature than an active volcano.
PERBANDINGAN HASIL NUMERIK METODE KONJUGAT GRADIEN HIBRID BARU (LS-DY) DAN METODE HS-CD Saputra, T Murdani; Maulidi, Ikhsan; Radhiah, Radhiah
Jurnal MSA (Matematika dan Statistika serta Aplikasinya) Vol 10 No 1 (2022): VOLUME 10 NOMOR 1 TAHUN 2022
Publisher : Universitas Islam Negeri Alauddin Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24252/msa.v10i1.26901

Abstract

Metode konjugat gradien merupakan suatu metode untuk menyelesaikan sistem persamaan linier pada skala besar, yang mana metode tersebut diperkenalkan oleh Hestenes dan Stiefel untuk menyelesaikan permasalahan tersebut. Metode konjugat gradien merupakan metode iteratif dan juga merupakan salah satu metode yang efektif dalam menyelesaikan optimasi tak berkendala. Dalam tulisan ini, penulis melakukan pengusulan metode konjugat gradien hibrid baru berdasarkan ide dari metode NH1, NH2, NH3 dan NH4. Metode hibrid tersebut diusulkan berdasarkan dari kekurangan dan kelebihan dari metode sebelumnya yaitu metode HS, FR, PRP, CD, LS dan Metode DY. Kekurangan dan kelebihan dari metode-metode tersebut diantaranya proses kinerja komputasi (iterasi) kurang baik dan kekonvergenan global. Berdasarkan dari metode-metode hibrid yang diusulkan tersebut maka penulis mengusulkan metode baru yaitu penggabungan dari metode LS dengan metode DY, dimana metode LS memiliki kelebihan pada kinerja komputasi dan DY kelebihannya pada kekonvergenan globalnya. Metode hibrid baru yang diusulkan tersebut yaitu metode NH5 (LS-DY) dan metode yang diusulkan ini akan di ujikan pada fungsi tak linear orde tinggi. Metode baru menunjukkan bahwa fungsi-fungsi yang diberikan dapat diselesaikan dengan sangat efisien serta perbandingan metode NH5 dengan metode-metode sebelumnya menunjukkan hasil pada proses komputasinya baik dan dapat bersaingKata Kunci: metode konjugat gradien, metode hibrid, knerja komputasi.
Bühlmann's Credibility Model with Claims of Negative Binomial and 2-Poisson Distribution Maulidi, Ikhsan; Apriliani, Vina
CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 7, No 4 (2023): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI
Publisher : Mathematics Department, Universitas Islam Negeri Maulana Malik Ibrahim Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/ca.v7i4.16400

Abstract

One of the premium determination techniques is to use credibility theory. In this study, a credibility premium determination model was derived with the best accuracy approach in the form of Bühlmann’s credibility premium. The claim data is assumed to have a Negative Binomial and 2-Poisson distribution. Bühlmann's credibility premium formula is given explicitly for these two data distributions. The obtained model is also applied to the correct data following these distributions. From the simulation results, it is obtained that the premium values are very close in value so that both models can be applied to the data and have a high level of credibility because they have a high credibility factor value.
Kredibilitas Bhlmann Semiparametrik dengan Klaim Berdistribusi Poisson Maulidi, Ikhsan; Iskandar, Taufiq; Zahara, Annisa; Saputra, T Murdani
Transcendent Journal of Mathematics and Applications Vol 2, No 2 (2023)
Publisher : Syiah Kuala University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24815/tjoma.v2i2.34726

Abstract

One method for calculating premiums based on the policyholder's risk characteristics is to employ the theory of credibility, particularly the semiparametric Bhlmann model. The aim of this research is to estimate the parameters of the Bhlmann credibility model using a semiparametric approach for claim frequencies that follow a Poisson distribution. Additionally, this study compares the semiparametric model, the parametric model, and the nonparametric model for the Bhlmann model. The assumptions made in this study concern claim frequencies following a Poisson distribution. The research results reveal that the semiparametric Bhlmann credibility premium for a Poisson distribution is 0.117992. Furthermore, the comparison between parametric and semiparametric approaches shows that premiums estimated using the semiparametric approach are lower than those estimated using the parametric approach. The difference is approximately 0.0085% for the Negative Binomial distribution and 0.00085% for the two Poisson distributions. However, there is no significant difference in premium values between the semiparametric and nonparametric approaches.
Extended F-Expansion Method for Solving the modified Korteweg-de Vries (mKdV) Equation Apriliani, Vina; Maulidi, Ikhsan; Azhari, Budi
Al-Jabar: Jurnal Pendidikan Matematika Vol 11 No 1 (2020): Al-Jabar: Jurnal Pendidikan Matematika
Publisher : Universitas Islam Raden Intan Lampung, INDONESIA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24042/ajpm.v11i1.5153

Abstract

One of the phenomenon in marine science that is often encountered is the phenomenon of water waves. Waves that occur below the surface of seawater are called internal waves. One of the mathematical models that can represent solitary internal waves is the modified Korteweg-de Vries (mKdV) equation. Many methods can be used to construct the solution of the mKdV wave equation, one of which is the extended F-expansion method. The purpose of this study is to determine the solution of the mKdV wave equation using the extended F-expansion method. The result of solving the mKdV wave equation is the exact solutions. The exact solutions of the mKdV wave equation are expressed in the Jacobi elliptic functions, trigonometric functions, and hyperbolic functions. From this research, it is expected to be able to add insight and knowledge about the implementation of the innovative methods for solving wave equations. 
Analysis of Students' Errors on the Fraction Calculation Operations Problem Safriani, Wirda; Munzir, Said; Duskri, M; Maulidi, Ikhsan
Al-Jabar: Jurnal Pendidikan Matematika Vol 10 No 2 (2019): Al-Jabar: Jurnal Pendidikan Matematika
Publisher : Universitas Islam Raden Intan Lampung, INDONESIA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24042/ajpm.v10i2.5224

Abstract

Students' errors on fraction problems often occur, especially in fraction counting operations. This error shows that the ability of students who do not understand the fraction problems. To overcome these errors, attention from the teacher is needed so that mistakes can be resolved. The purpose of this study is to describe students' errors in the fraction counting operation problem on each indicator, which is related to converting mixed fractions to ordinary fractions, determining fractions of value, and performing fraction addition and subtraction operations. This research is a qualitative descriptive study. The results showed that the majority of students experienced concept errors on each indicator requested in this study. Also, students make other mistakes such as mistakes of principle and carelessness. 
General Formula for limit of square function at infinity Wibowo, Bonno Andri; Maulidi, Ikhsan; Erliana, Windiani
Desimal: Jurnal Matematika Vol. 1 No. 3 (2018): Desimal : Jurnal Matematika
Publisher : Universitas Islam Negeri Raden Intan Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24042/djm.v1i3.3045

Abstract

Determination of the limit value of a function is an important things. Basically, the limit is used to look at the "properties" function value around the point. In this paper, we provide the general formula for the limit of square root function at infinite. This general formula comes from the development of a commonly known base formula. We use some simple algebra theorems to develop it. The result is very similar to the basic formula for limit of square root function at infinite.
Fungsi Zeta Riemann Genap Menggunakan Bilangan Bernoulli Maulidi, Ikhsan; Apriliani, Vina; Syazali, Muhamad
Desimal: Jurnal Matematika Vol. 2 No. 1 (2019): Desimal: Jurnal Matematika
Publisher : Universitas Islam Negeri Raden Intan Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24042/djm.v2i1.3589

Abstract

In this article, we study about the value of Riemann Zeta Function for even numbers using Bernoulli number. First, we give some basic theory about Bernoulli number and Riemann Zeta function. The method that used in this research was literature study. From our analysis, we have a theorem to evaluate the value of Riemann Zeta function for the even numbers with its proving.
The Numerical Simulation for Asymptotic Normality of the Intensity Obtained as a Product of a Periodic Function with the Power Trend Function of a Nonhomogeneous Poisson Process Maulidi, Ikhsan; Ihsan, Mahyus; Apriliani, Vina
Desimal: Jurnal Matematika Vol. 3 No. 3 (2020): Desimal: Jurnal Matematika
Publisher : Universitas Islam Negeri Raden Intan Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24042/djm.v3i3.6374

Abstract

In this article, we provided a numerical simulation for asymptotic normality of a kernel type estimator for the intensity obtained as a product of a periodic function with the power trend function of a nonhomogeneous Poisson Process. The aim of this simulation is to observe how convergence the variance and bias of the estimator. The simulation shows that the larger the value of power function in intensity function, it is required the length of the observation interval to obtain the convergent of the estimator.