Abstract: Coffee is one of the most important commodities in the global agricultural sector. However, the manual sorting process of coffee beans, which is still widely applied in the Small and Medium Industry (IKM) sector, tends to be time-consuming and often results in inconsistent quality assessments. This study aims to classify coffee bean quality using the DenseNet-201 deep learning architecture, optimized with the GridSearch method to obtain the best combination of hyperparameters. The dataset used consists of 450 images of coffee beans divided into two classes: good-quality and defective beans. The model was trained for 20 epochs using a transfer learning approach and evaluated using performance metrics such as accuracy, precision, recall, and F1-score. The test results show that the model before optimization achieved an accuracy of only 78.67%, while the model optimized with GridSearch reached a high accuracy of 99.47% with a low loss value. These findings indicate that the application of DenseNet-201 with hyperparameter tuning is capable of producing accurate and stable classification results, and can be relied upon as an automated solution for sorting coffee beans based on their quality. Keywords: Deep Learning, DenseNet201, Hyperparameter, GridSearch, Coffee Bean Classification Abstrak: Kopi merupakan salah satu komoditas penting dalam sektor pertanian global. Namun, proses pemilahan biji kopi secara manual yang masih banyak diterapkan pada sektor Industri Kecil dan Menengah (IKM) cenderung memakan waktu dan menghasilkan penilaian kualitas yang tidak konsisten. Penelitian ini bertujuan untuk mengklasifikasikan kualitas biji kopi menggunakan arsitektur Deep Learning DenseNet-201 yang dioptimalkan dengan metode GridSearch untuk memperoleh kombinasi hyperparameter terbaik. Dataset yang digunakan terdiri dari 450 gambar biji kopi dengan dua kelas: biji kopi bagus dan biji kopi rusak. Model dilatih selama 20 epoch dengan pendekatan transfer learning dan dilakukan evaluasi terhadap performa model menggunakan metrik akurasi, precision, recall, dan f1-score. Hasil pengujian menunjukkan bahwa model sebelum optimasi hanya mencapai akurasi sebesar 78,67%, sedangkan model dengan optimasi GridSearch mampu mencapai akurasi tinggi sebesar 99,47% dan nilai loss yang rendah. Hal ini menunjukkan bahwa penerapan DenseNet-201 dengan tuning hyperparameter mampu menghasilkan klasifikasi yang akurat dan stabil, serta dapat diandalkan sebagai solusi otomatis dalam proses sortasi biji kopi berdasarkan kualitasnya. Kata kunci: Deep Learning, DenseNet201, Hyperparameter, GridSearch, Klasifikasi Biji Kopi