Triwibowo, Dimas
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

IDENTIFICATION OF LIGNOCELLULOSE-LIKE MATERIAL USING SPECTROSCOPY ANALYSIS Adi, Danang Sudarwoko; Fatriasari, Widya; Narto; Triwibowo, Dimas; Darmawan, Teguh; Amin, Yusup; Sofianto, Imran Arra'd; Pari, Rohmah; Agustiningrum, Dyah Ayu; Rahmanto, Raden Gunawan Hadi; Dewi, Listya Mustika; Himmi, Setiawan Khoirul; Djarwanto; Damayanti, Ratih; Dwianto, Wahyu
Indonesian Journal of Forestry Research Vol. 11 No. 2 (2024): Indonesian Journal of Forestry Research
Publisher : Association of Indonesian Forestry and Environment Researchers and Technicians

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59465/ijfr.2024.11.2.299-306

Abstract

Lignocellulose materials, such as bamboo, rattan, and wood, have been largely used for furniture and crafts. On the other hand, the utilization of lignocellulose-like materials, which have a similar texture and appearance to those from nature, has been increasing recently due to their superior durability. This research aimed to identify the lignocellulose-like material using spectroscopy analysis, such as Raman and Near Infrared (NIR) which is well-known as a non-destructive, quick, and accurate approach for material identification. We investigated 4 types of lignocellulose-like materials that were provided by Dewan Serat Indonesia (The Indonesian Fiber Council) from an industry that produces them. The NIR analysis was performed at wavenumbers 10,000-4,000 cm-1. The natural lignocellulose (bamboo and wood) and the polymers (polyethylene and polyproline) were used as standards. Raman analysis was further employed to identify the composition of selected lignocellulose-like materials by comparing their spectra with the library software. The results showed that the original NIR spectra of lignocellulose-like and those natural materials were different, indicating that the NIR analysis can differentiate those materials. The NIR spectra of lignocellulose-like materials were similar to those of polyethylene spectra. Those lignocellulose-like were also identified as polyethylene due to the similarity of the Raman spectra and their library spectra.
THE SURFACE CHARACTERISTICS AND PHYSICAL PROPERTIES OF SENGON WOOD AT HIGH-TEMPERATURE HEATING TREATMENTS Fariha, Tushliha Ayyuni; Marbun, Sari D; Sudarmanto; Narto; Bahanawan, Adik; Sejati, Prabu S; Darmawan, Teguh; Triwibowo, Dimas; Adi, Danang S; Amin, Yusup; Augustina, Sarah; Dwianto, Wahyu; Sari, Rita K; Alipraja, Irsan; Wahyudi, Imam; Kusuma, EM. Latif R
Indonesian Journal of Forestry Research Vol. 12 No. 1 (2025): Indonesian Journal of Forestry Research
Publisher : Association of Indonesian Forestry and Environment Researchers and Technicians

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59465/ijfr.2025.12.1.135-149

Abstract

Sengon (Falcataria moluccana Miq.) is a fast-growing timber species widely distributed in Indonesia. However, its dimensional instability and low surface quality have limited its widespread use. Wood modification is essential for enhancing these properties, and one effective approach is heat treatment. This study investigated the effects of different heat treatment methods and durations on color change, surface roughness, weight loss (WL), decreased density, and dimensional stability of sengon wood. The heat modification process was conducted using two methods: oven-heating and hot press-heating, with temperatures set at 200°C for durations ranging from 1 to 5 hours. The results indicated that oven-heated samples exhibited higher surface roughness, weight loss, density reduction, and dimensional stability while showing less color change than hot press-heated samples. Additionally, the hot press-heated samples displayed more significant color changes (darkening) and smoother surface roughness. WL and decreased density were also more pronounced with longer heating durations, except for the 4- and 5-hour hot press-heating treatments. Notably, oven-heated samples demonstrated higher dimensional stability than hot press-heated samples as the duration of heating increased. Based on the results, the optimal treatment varies depending on the desired product characteristics. For improved surface qualities with consideration of WL, the optimum treatment is a 2-hour hot press-heating treatment. Higher dimensional stability can be achieved through a 3-hour oven-heating treatment.