Claim Missing Document
Check
Articles

Found 16 Documents
Search

Model Machine Learning Untuk Analisis Sentimen Masyarakat Terhadap Kenaikan PPN di Media Sosial X Ridho Pratama, Ilham; Cahyana, Yana; Rahmat; Wahiddin, Deden
Bulletin of Computer Science Research Vol. 5 No. 4 (2025): June 2025
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bulletincsr.v5i4.523

Abstract

This study examines people's reactions to the Indonesian government's plan to adjust the VAT rate from 11% to 12%, which is scheduled to take effect in 2025. This policy triggered a variety of opinions among netizens, especially on the social networking service X. To explore public opinion, data was collected through web crawling techniques from October to December 2024, resulting in 1,871 records. Then the dataset was preprocessed by text cleaning, case folding, tokenization, stopword removal, and stemming, and the dataset was reduced to 1806. In addition, up to 1000 data will be manually labeled, negative, neutral, positive, by language experts to ensure that each sentence has the appropriate label. These data are used for testing and training, then up to 806 unlabeled data are used as final testing. At the word weighting stage, the Term Frequency-Inverse Document Frequency (TF-IDF) method is used to perform the process. In this study, three machine learning algorithms were used to compare the classification performance, namely Support Vector Machine (SVM), Random Forest, and Decision Tree. Based on the evaluation results, the SVM algorithm recorded the highest accuracy rate of 94%, followed by Random Forest with 93% and Decision Tree with 91%. The results showed a predominance of negative sentiments, indicating public dissatisfaction with the policy. This study proves that machine learning techniques can be effectively used to capture public perceptions through social media, which in turn can be a benchmark for the government to make decisions that will be enforced.
Comparison of K-Nearest Neighbors and Naive Bayes Classifier Algorithms in Sentiment Analysis of 2024 Election in Twitter (X) Enjelia, Lola; Cahyana, Yana; Rahmat; Wahiddin, Deden
Journal of Applied Informatics and Computing Vol. 9 No. 3 (2025): June 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i3.9593

Abstract

This study compares the performance of the K-Nearest Neighbors (K-NN) and Naive Bayes Classifier (NBC) algorithms in sentiment analysis of the 2024 Regional Election (Pilkada) based on Indonesian local data sourced from platform X. A total of 1,187 tweets were collected through crawling, followed by extensive preprocessing and manual sentiment labeling by a professional linguist to ensure data validity and reliability. The study highlights NBC's superior accuracy (81.05%) compared to K-NN (75.26%), largely due to the characteristics of short-text social media data that align with NBC's independence assumptions. Key terms identified through TF-IDF analysis include “pilkada”, “2024”, and “damai” in positive sentiment, while “mahkamah konstitusi” and “kalah” dominated negative sentiment. The results imply that although public discourse largely supports the election process, critical sentiments toward election dispute issues persist. These findings offer practical implications for election authorities, policymakers, and digital campaign strategists, particularly in optimizing public communication strategies, early detection of potential conflicts, and designing public opinion monitoring systems based on real-time sentiment analysis. By leveraging high-quality labeled local data, this study makes a significant contribution to modeling public opinion dynamics in Indonesia during political events.
Klasifikasi Daun Mangga Yang Terkena Hama Dengan Metode Gray Level Co-occurrence Matrix Menggunakan Support Vector Machine Dan K-Nearest Neighbor Berbasis Data Kaggle Nursyawalni, Reva; Indra, Jamaludin; Rohana, Tatang; Wahiddin, Deden
Jurnal Pendidikan dan Teknologi Indonesia Vol 5 No 9 (2025): JPTI - September 2025
Publisher : CV Infinite Corporation

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jpti.1009

Abstract

Penurunan produksi buah mangga di sebabkan oleh kerusakan atau serangan hama pada daun mangga ada beberapa jenis hama pada daun mangga yang umum menyerang antara lain kutu daun (Aphis gossypii), bercak daun alternaria, anthracnose, penggerek batang dan lain-lain. Untuk memperoleh hasil klasifikasi yang lebih akurat dan performa model yang optimal, dibutuhkan sistem yang mampu menghasilkan tingkat akurasi terbaik. Sebagai respons terhadap urgensi tersebut, penelitian ini bertujuan untuk mengklasifikasikan daun mangga yang terkena hama dengan memanfaatkan algoritma Support Vector Machine dan K-Nearest Neighbor, serta penggunaan Gray Level Co-occurrence Matrix sebagai metode untuk mengekstraksi tekstur gambar. Rangkaian tahapan dalam penelitian ini meliputi pre-processing, augmentasi data, ekstraksi fitur, proses klasifikasi oleh kedua algoritma, dan dievaluasi menggunakan akurasi. Hasilnya, algoritma Support Vector Machine  dengan kernel Radial Basis Function mencapai 78% untuk algoritma K-Nearest Neighbor mencapai akurasi 80% dengan ketanggaan k=3
CLASSIFICATION OF RICE ELIGIBILITY BASED ON INTACT AND NON-INTACT RICE SHAPES USING YOLO V8-BASED CNN ALGORITHM Hastari, Nazwa Putri; Rohana, Tatang; Masruriyah, Anis Fitri Nur; Wahiddin, Deden
Jurnal Teknik Informatika (Jutif) Vol. 5 No. 5 (2024): JUTIF Volume 5, Number 5, Oktober 2024
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2024.5.5.2413

Abstract

The large amount of unfit rice has an impact on the quality of rice provided to the community. This is due to the lack of supervision of the quality of existing rice, so that the quality of rice distributed to the community has a lot of unfit quality. Rice production for public consumption reached 21.69 million tons in 2021, according to data from the Central Statistics Agency (BPS). Rice is the main food of the Indonesian people because most Indonesians are farmers and the vast amount of agricultural land makes Indonesia one of the largest rice producing countries in Southeast Asia, this has a huge impact on people's habits in consuming rice as the main food provider. The Government of the Republic of Indonesia started a Social Assistance rice distribution program through the Ministry of Social Affairs in 2018. This program is named Prosperous Rice Social Assistance (Bansos Rastra). Classification of rice eligibility can be the first step to ensure that the rice received from the government is of high quality and can meet the daily needs of households in Indonesia. CNN algorithm based on YOLOv8 system can automatically recognize the form of rice given by the government whether it is feasible or not. In the research stages there are dataset collection, preprocessing, training models to evaluation. Based on the results obtained in this study, the accuracy achieved is 79% for the Eligible class and 79% for the Ineligible class with Confidence score reaching a value of 1.00. The results of this study can be used as a decent and unfit rice classification detection model by looking at the shape of the rice. So that the rice distributed to the community has decent rice quality.
CLASSIFICATION OF FAMILY HOPE PROGRAM RECIPIENTS USING NAIVE BAYES AND C4.5 METHODS Fauzi, Farras Ahmad; Rohana, Tatang; Juwita, Ayu Ratna; Wahiddin, Deden
Jurnal Teknik Informatika (Jutif) Vol. 5 No. 5 (2024): JUTIF Volume 5, Number 5, Oktober 2024
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2024.5.5.3697

Abstract

Receiving PKH assistance in Rawamerta District does not always go well, so there are people who are not entitled to receive assistance. This is because there is still no system that can facilitate the process of classifying PKH assistance recipients. The application of data mining can facilitate classification with high speed and accuracy. The purpose of this study is to classify PKH assistance recipients using the Naïve Bayes and C4.5 methods to determine the eligibility of PKH for people facing social welfare problems. The data used is PKH data in Rawamerta District, Karawang Regency in 2023, totaling 1834 data. The results of naive bayes accuracy of 98.89%, precision 98.25%, recall 98.51%, F1-score 98.89%, and AUC 1.00 are included in the excellent classification because they are in the range of 0.90-1.00, while the C4.5 algorithm produces Accuracy values ​​of 99.26%, Precision 99.25%, Recall 99.25%, F1-score 99.25% and AUC 0.99 are included in the excellent classification because they are in the range of 0.90-1.00. The C4.5 algorithm is superior to Naive Bayes, because the accuracy produced is higher.
Analisis Sentimen Rencana Penerapan Cukai Pada Minuman Manis Kemasan Menggunakan Algoritma Naive Bayes dan Logistic Regression Gozali, Gozali; Baihaqi, Kiki Ahmad; Sukmawati, Cici Emilia; Wahiddin, Deden
Building of Informatics, Technology and Science (BITS) Vol 7 No 1 (2025): June (2025)
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v7i1.7411

Abstract

The plan to impose excise tax on packaged sweetened beverages (PSB) is proposed as a strategic measure to reduce sugar consumption among the public. This policy has elicited various responses from society, especially on social media platforms such as TikTok. The purpose of this study is to evaluate public sentiment towards the PSB excise tax policy by analyzing comments posted on the TikTok platform, comparing the performance of the Naive Bayes and Logistic Regression algorithms. Data were collected from comments on news videos about the implementation of the excise tax on PSB posted by official journalist accounts on TikTok, using the TikTok Comments Scraper available on the apipy website, resulting in 1,332 comments. The data were processed through preprocessing steps including text cleaning, tokenization, stemming, and word weighting using TF-IDF. After expert sentiment labeling, the data were then split into training and testing sets with an 80:20 ratio. Evaluation was conducted using a confusion matrix to obtain performance metrics such as accuracy, precision, recall, and F1-score for each model. The analysis revealed that negative comments dominated at 65.2%, while positive comments accounted for 34.8%. The Logistic Regression algorithm achieved an accuracy of 81.37%, precision of 86.22%, recall of 75.14%, and an F1-score of 77.06%. Meanwhile, the Naive Bayes algorithm obtained an accuracy of 79.85%, precision of 82.19%, recall of 74.17%, and an F1-score of 75.76%. It can be concluded that the majority of TikTok users still express negative responses to the PSB excise tax policy, and the Logistic Regression algorithm demonstrates superior performance in sentiment classification compared to the Naive Bayes algorithm.