Dalam sistem pengamanan dan verifikasi digital, kata sandi sering digunakan tetapi memiliki kerentanan terhadap manipulasi dan pencurian. Untuk mengatasi masalah ini, metode alternatif seperti pengenalan wajah mulai banyak digunakan karena fitur wajah sulit dipalsukan, stabil sepanjang hidup, dan unik bagi setiap individu. Pengenalan wajah dapat dilakukan dengan berbagai metode, termasuk algoritma Local Binary Patterns Histogram (LBPH) dan Convolutional Neural Network (CNN). LBPH adalah algoritma tradisional yang berbasis pada fitur wajah dengan keunggulan dalam penggunaan sumber daya komputasi yang ringan. Namun, algoritma ini kurang efektif dalam kondisi pencahayaan yang buruk dan memiliki waktu pemrosesan yang lebih lama. Sebaliknya, CNN adalah metode modern berbasis deep learning yang menawarkan akurasi dan kecepatan pemrosesan yang lebih tinggi, tetapi membutuhkan sumber daya komputasi yang lebih besar. Penelitian ini membandingkan performa kedua algoritma dalam hal akurasi dan kecepatan. Hasil penelitian menunjukkan bahwa masing-masing algoritma memiliki kelebihan dan keterbatasan. Algoritma CNN menunjukkan performa yang lebih unggul dibandingkan LBPH dalam efisiensi waktu komputasi untuk pengenalan wajah. Dari hasil pengujian, terlihat bahwa CNN memiliki tingkat akurasi pengenalan wajah yang mirip dengan LBPH, yaitu 98.6607%, dibandingkan dengan LBPH yang memiliki selisih 0.4464% lebih tinggi, yaitu mencapai 99.1071%. Selain itu, waktu komputasi untuk algoritma CNN lebih cepat, yaitu 0,0030 detik per citra, dibandingkan dengan LBPH yang memerlukan waktu 0,0227 detik per citra. Hal ini menunjukkan keunggulan CNN dalam menangkap fitur-fitur kompleks dari citra wajah dan efisiensi dalam pemrosesan data. Namun, perlu diperhatikan bahwa algoritma CNN membutuhkan sumber daya komputasi yang lebih besar jika dibandingkan dengan algoritma LBPH. Sehingga, pemilihan algoritma yang sesuai harus disesuaikan dengan kebutuhan spesifik dari aplikasi yang akan diterapkan. Mengingat kedua metode memiliki kelebihan dan keterbatasan masing-masing, keputusan akhir dalam pemilihan algoritma harus mempertimbangkan faktor-faktor seperti ketersediaan sumber daya komputasi, kondisi pencahayaan, dan kebutuhan spesifik dari aplikasi pengenalan wajah tersebut. Dengan demikian, penelitian ini memberikan panduan praktis bagi pengembang dan pengguna dalam memilih dan mengimplementasikan algoritma pengenalan wajah yang sesuai dengan kebutuhan dan sumber daya yang dimiliki.