Claim Missing Document
Check
Articles

Found 18 Documents
Search

METODE DEEP LEARNING UNTUK ANALISIS TEKS: LITERATUR REVIEW Wesley, Royman; Gunawan, Rahmad
JATI (Jurnal Mahasiswa Teknik Informatika) Vol. 8 No. 5 (2024): JATI Vol. 8 No. 5
Publisher : Institut Teknologi Nasional Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36040/jati.v8i5.11780

Abstract

Penelitian ini mengeksplorasi metode analisis sentimen teks, seperti Artificial Neural Network (ANN), Convolutional Neural Network (CNN) dengan Long Short-Term Memory (LSTM), Deep CNN, dan Bidirectional LSTM (BiLSTM). Hasil menunjukkan bahwa kombinasi ANN dan Synthetic Minority Over-sampling Technique (SMOTE) mencapai akurasi 87,06%, sementara CNN dan LSTM masing-masing mencapai 0,88 dan 0,84. BiLSTM mencatat akurasi terbaik sebesar 91%, dan BERT mencapai 73%, dengan potensi peningkatan melalui dataset yang lebih besar. Analisis komentar YouTube mengenai keputusan Mahkamah Konstitusi menemukan dominasi sentimen negatif, dengan model Multi-Layer Perceptron (MLP) menggunakan SMOTE mencapai akurasi 99%. Dalam penelitian ini, peneliti menggunakan metode kajian literatur, mengumpulkan data dari 10 artikel terakreditasi SINTA 1 - SINTA 5 yang diterbitkan antara 2019 hingga 2023. Analisis dilakukan untuk mengevaluasi kondisi terkait topik penelitian dan merumuskan kesimpulan mendalam dari berbagai sumber literatur. Temuan ini menekankan pentingnya teknik pengolahan data yang tepat dan keseimbangan dataset untuk meningkatkan performa model analisis sentimen, terutama dalam konteks isu sosial.
Pendekatan Transfer Learning untuk Klasifikasi Penyakit Mata Menggunakan Citra dengan CNN InceptionV3 Gunawan, Rahmad; Fathurrahman, Raihan; Widyaningrum, Amelia Ismania Sita; Issandra, Febri; Abdurachman, Muhammad Andhika; Putra, Yogi Ernanda; Naufal
Computer Science and Information Technology Vol 6 No 1 (2025): Jurnal Computer Science and Information Technology (CoSciTech)
Publisher : Universitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37859/coscitech.v6i1.8509

Abstract

Eye diseases are a leading cause of vision impairment and blindness worldwide. Therefore, detection of eye diseases is crucial in the prevention of blindness. This study develops an eye disease classification model based on Convolutional Neural Network (CNN) using Transfer Learning with InceptionV3. The dataset consists of 1559 images, divided into 1249 training images and 310 validation images, covering 8 eye disease classes. The model was trained using 40 epochs with the Adam optimizer. Evaluation results show a validation accuracy of 81.29%. While the model performed well, some classes, such as hordeolum, showed lower accuracy, indicating areas that need further improvement. This study confirms that Transfer Learning with InceptionV3 is an effective approach for eye disease classification.
Manajemen Risiko Bencana Gempa Bumi Berbasis Analytical Hierarchy Process Di Wilayah Rawan Gempa Bumi: Studi Kasus Provinsi Banten Gunawan, Rahmad; Brantas Suharyo G; Imer HPS; Ima Damayanti; Hotma RS; Purnomo Yusgiantoro; I Wayan Medio
Jurnal Geografi, Edukasi dan Lingkungan (JGEL) Vol. 9 No. 2 (2025): Edisi Bulan Juli
Publisher : Pendidikan Geografi Universitas Muhammadiyah Prof. Dr. Hamka

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22236/jgel.v9i2.18576

Abstract

Earthquake disasters are feared by many people, especially people who live in disaster-prone areas such as coasts, mountains and other vulnerable areas. The physical threat posed by earthquake disasters, the psychological and economic impacts arising from loss of life, destruction of property, and social disruption are also enormous. Disaster risk management is important because it is expected to minimize threats, reduce vulnerability and increase the capacity of threatened areas. This research is to find the best alternative in strategic decision making that can be used in implementing earthquake disaster risk management with variable factors of danger, vulnerability and increasing community resilience. This research uses a qualitative method which processes the data through the Analytical Hierarchy Process (AHP) with a case study of earthquake-prone areas in Banten Province. The research sites were carried out in Serang Regency, Cilegon Regency, Pandeglang Regency and Lebak Regency, Banten Province, which are earthquake-prone areas. Improving earthquake disaster management infrastructure is a top priority in reducing risks due to earthquake disasters because it can minimize threats, reduce vulnerability and increase the capacity of threatened areas, especially in the Banten Province area by improving the quality of public facilities, evacuation facilities and infrastructure as well as regulations regarding improving the quality of buildings. residences and industries that are standardized to be earthquake resistant.
A Bibliometric Analysis of Natural Language Processing and Classification: Trends, Impact, and Future Directions Setiawan Ardi Wijaya; Rahmad Gunawan; Rangga Alif Faresta; Asno Azzawagama Firdaus; Gabriel Diemesor; Furizal
Scientific Journal of Engineering Research Vol. 1 No. 1 (2025): January
Publisher : PT. Teknologi Futuristik Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.64539/sjer.v1i1.2025.6

Abstract

This study presents a bibliometric analysis of Natural Language Processing (NLP) and classification research, examining trends, impacts, and future directions. NLP, a key field in artificial intelligence, focuses on enabling computers to process and understand human language through tasks such as text classification, sentiment analysis, and speech recognition. Classification plays a crucial role in organizing textual data, facilitating applications like spam detection and content recommendation. The research employs bibliometric analysis to evaluate publication trends, citation networks, and emerging themes from 1992 to 2025. Using data retrieved from Scopus, descriptive statistical analysis and bibliometric mapping with VOSviewer reveal key contributors, influential publications, and subject area distributions. Findings indicate a significant rise in NLP research, with deep learning models, particularly transformers, driving advancements in the field. The study highlights dominant research areas, including computer science, engineering, and medicine, and identifies leading countries in NLP research, such as the United States, China, and India. Additionally, ethical concerns, including bias and fairness in NLP applications, are discussed as critical challenges for future research. The insights derived from this analysis provide valuable guidance for researchers and policymakers in shaping the next phase of NLP development.
Accuracy and Prediction of Hopperburn by Brown Planthopper (Nilaparvata Lugens Stal) with Sentinel-2 Images Gunawan, Rahmad; Reflinaldon, Reflinaldon; Yaherwandi, Yaherwandi
Jurnal Proteksi Tanaman (Journal of Plant Protection) Vol. 5 No. 2 (2021): December 2021
Publisher : Plant Protection Department, Faculty of Agriculture, Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jpt.5.2.107-117.2021

Abstract

Forecasting of brown planthopper attack or BPH (Nilaparvata lugens Stal) using artificial intelligence and vegetation index of Sentinel-2 Satellite Imagery improves forecasting the incidence of hopperburn. This study aimed to determine the accuracy and correlation of the random forest classification of Sentinel-2 imagery to the incidence of hopperburn reported by Plant Pest Organisms Observer (PPOO) and determine the best method for predicting it. The study was done through observation and secondary data processing about the age of the plant, the incidence of hopperburn by BPH, interviews with farmers, and PPOO. The results showed that the hopperburn NDVI index ranged from 0.23 - 3.8. The random forest classification accuracy was high (Kappa Index = 0.82). The relationship between the hopperburn area from the PPOO report and the predicted area from Sentinel-2 images classified as (R2 = 0.53, R = 0.728) with the equation Y = -1.5 + 0.82 X. The correlation can be improved using spatial regression Geographically Weighted Regression (GWR4) with the best gaussian distance of 1.76 km (R2 = 0.6, R = 0.77). The best prediction for the NDVI stage of hopperburn attack time series with random forest (RMSE = 0.12819) was better than the prediction of the hopperburn attack time series with the exponential smoothing method from the PPOO report (RMSE 3.302184).
Klasifikasi Penyakit Daun Kentang dengan Transfer Learning Menggunakan CNN optimalisasi Arsitektur MobileNetV2 Gunawan, Rahmad; Fauzan Salim; Wahyudhy, Adhe Indra; Wibowo, Angga Yudha; Yordan, Gibril; Filamori, Refly Fauzan
Computer Science and Information Technology Vol 6 No 2 (2025): Jurnal Computer Science and Information Technology (CoSciTech)
Publisher : Universitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37859/coscitech.v6i2.8599

Abstract

Potatoes are a major food crop with high economic value, but they are susceptible to various Diseases impacting potato leaves can significantly influence their quality and productivity. This research focuses on identifying diseases in potato leaves through the Convolutional Neural Network (CNN) approach, leveraging transfer learning with the MobileNetV2 architecture. The dataset utilized comprises 4,072 images of potato leaves. categorized into three groups: non-infected leaves (healthy ), Early Blight-infected leaves, and Late Blight-infected leaves. The dataset is processed through data augmentation and normalization to enhance data quality. The resulting model demonstrates excellent performance, achieving an accuracy of 95.31%, a precision of 95.81%, a recall of 95.31%, and an F1-Score of 95.38%. These findings indicate the approach demonstrates its ability to identify the condition of potato leaves with a low classification error rate, especially in the healthy category. However, there are challenges in classifying between Early Blight and Late Blight that require further analysis and method improvement. This study contributes to the development of efficient and accurate plant disease detection systems.
Inovasi Pemanfaatan Limbah Air Kelapa Menjadi Pupuk Organik Cair (POC) dalam Mendukung Pertanian Ramah Lingkungan di Desa Teluk Merbau Gunawan, Rahmad; Rais, Muhammad_Akmal; Ramadhan, Syahrudin; Damayanti, Risma; Maysa Putri, Yulia; Zaskiv S, Marshal Khairana; Pratiwi, Husnatul Fadillah; Pratama, Ade; Sugiyadi, Riski; Riani, Della Ayunda; Arfa, Laura Zevira; Rahmania, Marsha Nailah; Yanto, Apri; Yanti, Elis
Jurnal Pengabdian UntukMu NegeRI Vol. 9 No. 3 (2025): Pengabdian Untuk Mu negeRI
Publisher : LPPM UMRI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37859/jpumri.v9i3.10283

Abstract

Sektor pertanian di Indonesia masih menghadapi tantangan dalam mengurangi ketergantungan terhadap pupuk anorganik. Penggunaan pupuk kimia yang berlebihan selain meningkatkan biaya produksi juga menimbulkan dampak negatif terhadap kualitas tanah dan lingkungan. Salah satu alternatif yang dapat dikembangkan adalah pupuk organik cair (POC) berbahan dasar air kelapa, yang memiliki kandungan unsur hara makro, mikro, dan hormon pertumbuhan tanaman. Kegiatan pengabdian masyarakat ini dilaksanakan bersama Ibu-Ibu PKK Desa Teluk Merbau melalui sosialisasi dan pelatihan pembuatan POC dari limbah air kelapa. Metode penelitian menggunakan pendekatan kualitatif dengan desain studi kasus yang melibatkan sosialisasi, demonstrasi, serta evaluasi terhadap pemahaman dan keterampilan petani dalam pembuatan POC. Hasil kegiatan menunjukkan peningkatan pengetahuan dan keterampilan peserta dalam memanfaatkan limbah air kelapa menjadi produk pupuk organik cair yang bernilai guna. Dampak lain yang terlihat adalah tumbuhnya kesadaran akan pertanian berkelanjutan serta peluang ekonomi melalui pemanfaatan limbah rumah tangga. Kegiatan ini diharapkan menjadi awal bagi masyarakat desa dalam mengembangkan inovasi pengolahan limbah organik yang ramah lingkungan dan mendukung kemandirian pertanian.
Penerapan Teknologi Rocket Stove untuk Mengurangi Polusi Pembakaran Sampah di Kampung Merangkai Pradipa, Raditya; Gunawan, Rahmad; Alfiah Insani Amin, Andi Nur; Yuliskania, Aisyara; Tania, Manzilah Ditiara; Harmawan, Muhamad Rizki; Jasmin, Muhammad Iqbal; Nugroho, Altaric; Fadilla, Niken Rahma; Vania, Azra Gusti; Avicenna, Achyar Zein; Nofrial, Nofrial; Razkia, Binta; Nadira, Besti Zahratul
Jurnal Pengabdian UntukMu NegeRI Vol. 9 No. 3 (2025): Pengabdian Untuk Mu negeRI
Publisher : LPPM UMRI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37859/jpumri.v9i3.10343

Abstract

Ineffective plastic waste management remains a significant problem in rural communities, particularly due to traditional burning practices that generate air pollution, odors, and health risks. The Muhammadiyah ‘Aisyiyah Community Service Program (KKNMAs) in Merangkai Village, Dayun District, Siak Regency aimed to provide an alternative solution through the application of appropriate technology in the form of a rocket stove. The implementation method consisted of preparation (literature study, field observation, and design), execution (socialization, construction of a rocket stove unit, and technical training), and evaluation (monitoring, interviews, and design improvements). The results indicated that the rocket stove reduced smoke and odor emissions by 60–80% compared to traditional burning, improved efficiency in processing dry waste, and encouraged active community participation in environmental management. Success factors included technology design, support from local government, and community awareness, although the limited number of units remained a challenge. This program demonstrated that rocket stove technology offers a sustainable small-scale waste management solution with potential replication in other rural areas.