Claim Missing Document
Check
Articles

Found 19 Documents
Search

Implementasi Load Balancing Dengan Algoritma Penjadwalan Weighted Round Robin Dalam Mengatasi Beban Webserver Anggi Hanafiah; Rizky Wandri
IT Journal Research and Development Vol. 5 No. 2 (2021)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25299/itjrd.2021.vol5(2).5795

Abstract

Dalam kehidupan sehari-hari semua orang tidak terlepas dari berbagai macam informasi, terutama informasi yang dihasilkan dari sebuah website. Selain dari pemrograman yang handal, resource yang lain seperti webserver juga sangat perlu diperhatikan agar website dapat berjalan dengan baik. Seiring meningkatnya kebutuhan konten dan pengunjung website, maka website sering mengalami crash atau request yang overload. Hal ini dikarenakan masih menerapkan single server untuk menangani website tersebut. Untuk mengatasi permasalahan tersebut, perlu diterapkan sebuah load balance cluster, dimana beban kerja webserver tersebut dapat didistribusikan ke beberapa node cluster. Algoritma penjadwalan weighted round robin merupakan salah algoritma penjadwalan dimana beban kerja server dapat berjalan seimbang dengan cara memberikan jumlah bobot ke masing-masing node cluster.
Analisis Pola Penjualan Barang Teknologi Informasi (TI) Menggunakan Algoritma FP-Growth Rizky Wandri; Anggi Hanafiah
IT Journal Research and Development Vol. 6 No. 2 (2022)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25299/itjrd.2022.8155

Abstract

Determination of sales patterns is very important in marketing. Sales pattern serves to conduct an effective analysis in improving marketing. Sales analysis aims to explore new knowledge that can help design effective strategies by utilizing sales transaction data. This study processes sales data for 12 transaction days containing 47 items using the Fp-Growth algorithm. The results of this study are items with a minimum value of support > 0.10 and confidence 0.60 and will be compared with testing data using RapidMiner to test whether the results are valid so that the test results can help in designing sales strategies.
Analisa Perbandingan Web Server Untuk Kebutuhan Open Journal System (OJS) Menggunakan Secure Tunnel Yudhi Arta; Rizky Wandri; Anggi Hanafiah; Bima Kristian Pranoto; M Rizki Fadhilah
CogITo Smart Journal Vol. 8 No. 2 (2022): Cogito Smart Journal
Publisher : Fakultas Ilmu Komputer, Universitas Klabat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31154/cogito.v8i2.407.537-548

Abstract

Jurnal digital (e-journal) melalui Open Journal System (OJS) menjadi salah satu sarana dalam mempublikasikan hasil penelitian pada lingkup yang lebih luas. Hal ini diharapkan dapat meningkatkan reputasi yang baik sebagai referensi dari para penulis dalam pengembangan ilmu pengetahuan. Server adalah tempat untuk menyimpan konten website atau sering juga disebut dengan istilah hosting. Tanpa adanya server, maka sebuah website tidak bisa diakses. Banyak web server yang ada saat ini, cotohnya yang populer adalah Apache dan Nginx. Dua web server ini merupakan web server yang banyak digunakan saat ini oleh banyak website di seluruh dunia. Penelitian ini dilakukan untuk menguji dan menganalisa kinerja dari web server untuk kebutuhan OJS. Sebab, dengan traffic yang tinggi pada OJS, sebuah web server diharapkan mampu untuk menangani permintaan yang tinggi. Dari pengujian yang dilakukan terhadap beberapa parameter, website Open Journal System yang menggunakan web server Apache bekerja lebih optimal daripada website Open Journal Sytstem yang menggunakan web server Nginx sehingga saat diakses menggunakan secure tunnel, web Open Journal System (OJS) gagal memuat file header dan footer sehingga tampilan website jadi kurang menarik dan tidak user friendly.
Sentimen Analisis Terhadap Customer Review Produk Shopee Berbasis Wordcloud Dengan Algoritma Naïve Bayes Classifier Anggi Hanafiah; Arbi Haza Nasution; Yudhi Arta; Rizky Wandri; Hafiza Oktasia Nasution; Jerika Mardafora
INTECOMS: Journal of Information Technology and Computer Science Vol 6 No 1 (2023): INTECOMS: Journal of Information Technology and Computer Science
Publisher : Institut Penelitian Matematika, Komputer, Keperawatan, Pendidikan dan Ekonomi (IPM2KPE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31539/intecoms.v6i1.5845

Abstract

Review produk merupakan informasi yang sangat dibutuhkan untuk mendapatkan kepercayaan costumer pada marketplace. Pelaku bisnis harus perlu melakukan analisis dari review yang diberikan oleh customer terhadap evaluasi produk dan layanan. Dalam penelitian ini metode yang digunakan menggunakan metode sentiment analisis. Sentiment analysis merupakan salah satu bidang dalan Natural Language Processing yang membangun sistem untuk mengenali dan mengestrak opini dalam bentuk teks baik dari berbagai sumber data internet dan beragam platform media sosial. Dengan sentiment analysis dapat diketahui apa saja kekurangan dan keunggulan dalam sebuah bisnis dengan memahami dan mengelompokkan sentimen (positif, negative, netral) yang terdapat dalam tulisan dengan menggunakan analisis teks. Pada penelitian ini akan dilakukan analisis sentiment dengan menggunakan algoritma naïve bayes dengan menentukan salah satu produk pada marketplace shopee. Kemudian selanjutnya dengan metode wordcloud dapat mengetahui sentimen positif dan negative yang sering diberikan oleh costumer. Berdasarkan hasil implementasi dan pengujian sentiment analysis ini dapat disimpulkan bahwa penerapan analisis sentimen ini sangat efektif dan efisien untuk mengetahui hasil sentimen terhadap produk dan layanan melalui review atau komentar yang diberikan customer dengan jumlah dataset yang besar. Informasi yang didapatkan dapat menjadi bahan evaluasi dalam mengoptimalisasikan produk dan layanan tersebut guna meningkatkan kepercayaan customer terhadap pelaku bisnis
Designing a Learning Game for Elementary School Students in Learning Mathematics using a Mobile Platform Rizky Wandri; Panji Rachmat Setiawan; Yudhi Arta; Anggi Hanafiah
Sistemasi: Jurnal Sistem Informasi Vol 13, No 3 (2024): Sistemasi: Jurnal Sistem Informasi
Publisher : Program Studi Sistem Informasi Fakultas Teknik dan Ilmu Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32520/stmsi.v13i3.4058

Abstract

Education is an important aspect in forming the potential of the young generation where the use of mobile platforms has become an integral part of everyday life. Over time, gadgets have become an access to learning besides books. Therefore, the increasingly complex development of the technological world encourages individuals to be able to apply technology in all their activities. Mathematics learning at elementary school level is often faced with challenges to make the learning process more fun and interactive. A common problem among students in Indonesia is that mathematics is considered a difficult subject. Monotonous learning reduces students' interest in learning. Therefore, designing learning games for elementary school students, especially in mathematics learning, can be an innovative solution to improve the quality and attractiveness of learning with interactive learning media. This research aims to create a game that allows students to learn more effectively which focuses on game development using the Game Development Life Cycle (GDLC) development model. This research produces a translation game from mathematics book learning material with the theme "Counting Numbers Up to 10,000" using the Unity 3D game engine which functions well and the application of the Game Development Life Cycle (GDLC) method also functions well.
Pendampingan Pengembangan Pariwisata Di Kampung Sungai Nipah Nagari Painan Selatan Painan Kabupaten Pesisir Selatan Berbasis Difusi Inovasi Ranggi Ade Febrian; Zaini Ali; Rizky Wandri; Zulfhan Azmal
ARSY : Jurnal Aplikasi Riset kepada Masyarakat Vol. 3 No. 2 (2023): ARSY : Jurnal Aplikasi Riset kepada Masyarakat
Publisher : Lembaga Riset dan Inovasi Al-Matani

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55583/arsy.v3i2.424

Abstract

Kabupaten Pesisir Selatan memiliki cukup banyak destinasi wisata yang menjadi tujuan wisata di provinsi Sumatera Barat seperti Pantai Carocok Painan dengan pulau Cingkuak di kecamatan IV Jurai dan kawasan wisata Mandeh di kecamatan Koto XI Tarusan. Juga terdapat Bukik Langkisau, Air Terjun Bayang Sani, Air Terjun Timbulun, Jembatan Akar dan Batu Kalang Tarusan. Di samping itu kabupaten Pesisir Selatan juga memiliki objek wisata sejarah Rumah Gadang Mandeh Rubiah, Mesjid Tua, Benteng Portugis dan kesenian Rabab Pasisie. Kawasan Mandeh merupakan salah satu Destinasi Utama Pariwisata Kabupaten (DUPK) sesuai dengan Peraturan Daerah Nomor 2 tahun 2015 tentang Rencana Induk Pembangunan Kepariwisataan Kabupaten Pesisir Selatan. Masing-masing daerah objek wisata tersebut di atas memiliki berbagai kelemahan sehingga perlu adanya potensi investasi sebagai berikut : 1) penambahan boat dan sumberdaya manusia sebagai pemandu wisata, 2) pembangunan sarana dan prasarana penunjang kegiatan pariwisata, 3) pembangunan infrastruktur dan penambahan wahana atraksi serta infrastruktur permainan laut, 4) pembangunan hotel, resort, salon kecantikan dan SPA, tempat hiburan, biro perjalanan dan travel serta fasilitas lainnya seperti pembangunan pusat kuliner dan pembangunan area wisata pedesaan, pembangunan kolam renang air laut, 5) konservasi biodata endemik. Kampung Sungai Nipah Kenagarian Painan Selatan Kecamatan IV Jurai Kabupaten adalah salah satu daerah yang memiliki potensi wisata alam yang sangat indah. Kombinasi pantai dan pulau-pulau kecil didepannya menjadi keindahan tersendiri di Kampung Sungai Nipah
Applications Soil Observation in the Field PT. Anugerah Sumber Makmur Minamas Research Center Hanafiah, Anggi; Wandri, Rizky; Pandini, Pandini
IT Journal Research and Development Vol. 7 No. 1 (2022)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25299/itjrd.2022.10319

Abstract

Many employees still have difficulty in entering data and searching for appropriate data. Employees who still input data manually and it takes a long time. The existence of a soil observation application in the field of PT. Anugrah Sumber Makmur Minamas Research Center was created with the aim of assisting employees in entering data and searching for data quickly and accurately. This application is made using the PHP programming language and MySQL as the database. The system development method in making this application uses the design sprint method. Based on tests conducted on users, this application functionally runs as expected and the success rate is 92%.
The Role of the Principal as an Educator in Developing Capability Teacher Information And Communication Technology Sari, Putri Indah; Mustika, Dea; Wandri, Rizky
IT Journal Research and Development Vol. 8 No. 2 (2024)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25299/itjrd.2023.12970

Abstract

The demands of teachers in this era require teachers to continue to develop with the times. It is the responsibility of the principal to help teachers improve their abilities. This study aims to determine the role, obstacles and solutions of the principal as an educator in developing the Information and Communication Technology skills of teachers at SD Negeri 109 Pekanbaru. This study used descriptive qualitative method. Data collection techniques using interviews, observation and documentation review. Testing the validity of the data using triangulation. Data analysis techniques namely data collection, data reduction, data presentation and drawing conclusions. The results showed that the principal had tried to carry out his role as an educator in developing teachers' ICT skills. The conclusion from the research results is that the role of the principal as an educator in developing teachers' ICT skills is carried out with strategies that have been prepared such as, involving teachers in all ICT-based training and providing opportunities for teachers to increase knowledge and skills, creating a conducive school atmosphere by completing infrastructure ICT and complement teaching materials by checking ICT teaching materials used by teachers in learning, providing guidance and advice at regular meetings or meetings and providing motivation such as giving praise to teachers who have contributed a lot to the school.
Integrating K-Means Clustering and K-Nearest Neighbor Classification for Effective Scholarship Recipient Selection Daulay, Suandi; Wandri, Rizky
Sistemasi: Jurnal Sistem Informasi Vol 14, No 1 (2025): Sistemasi: Jurnal Sistem Informasi
Publisher : Program Studi Sistem Informasi Fakultas Teknik dan Ilmu Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32520/stmsi.v14i1.4818

Abstract

This research is important because public interest in the KIP Kuliah Scholarship continues to increase. However, many educational institutions still use manual selection which is prone to bias and less effective in data management. Therefore, a method is required to make the selection process more efficient; the K-Means and K-Nearest Neighbor methods are two data processing methods that have been proven effective in various applications, including in the field of data processing. In this study, the K-Means and K-Nearest Neighbor methods are used to select scholarship recipients to increase efficiency in the process. Based on the processing carried out, there were 1257 participants who were then grouped into three clusters: Cluster 0 with 739 data points, Cluster 1 with 290 data points, and Cluster 2 with 228 data points. Testing using the K-Nearest Neighbor algorithm was carried out by evaluating the appropriate k values, specifically 27, 31, 35, 41, 45, and expanded to 185 to obtain the optimal value, namely K-155 and produced as many as 155 people who were deemed worthy and qualified according to the specified criteria. The combination of K-Means and K-NN algorithms resulted in an accuracy of 89.72% accomplished in 16 seconds. This combo can recognize data with excellent accuracy in a fast time while minimizing errors. The test results suggest that this technique is effective in selecting applicants based on the criteria and quotas established, thus it can be used as a guideline for future selection.
Analisis Performa Algoritma Machine Learning Untuk Identifikasi Depresi Pada Mahasiswa Fadhilla, Mutia; Wandri, Rizky; Hanafiah, Anggi; Rachmat Setiawan, Panji; Arta, Yudhi; Daulay, Suandi
Journal of Informatics Management and Information Technology Vol. 5 No. 1 (2025): January 2025
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/jimat.v5i1.473

Abstract

Mental health, especially depression, is a major issue among college students due to academic, social, and social media pressures. Depression detection faces challenges such as stigma, low literacy, and ineffective conventional methods. Machine learning technology offers solutions with algorithms such as Naive Bayes, SVM, and Random Forest to improve detection accuracy, support early intervention, and improve the student mental health system. Mental health, especially depression, is a major issue among college students due to academic, social, and social media pressures. Depression detection faces challenges such as stigma, low literacy, and ineffective conventional methods. Machine learning technology offers solutions with algorithms such as Naive Bayes, K-Nearest Neighbor, Decision Tree, Logistic Regression, Random Forest, and Support Vector Machine to improve detection accuracy, support early intervention, and improve the student mental health system. Based on the results of the performance analysis of the machine learning algorithm, the most effective model in predicting depression status in students is Logistic Regression which has an accuracy rate of 95.62%. As a strategic step, machine learning technology can be integrated for early diagnosis of depression in students. This system is expected to be more effective and efficient, improve diagnostic accuracy, and open up opportunities for new approaches to responsive, data-driven mental health.