Claim Missing Document
Check
Articles

Found 5 Documents
Search
Journal : Kharisma Tech

ANALISIS PERFORMA WEBSITE MIND & SOUL MENGGUNAKAN GTMETRIX DAN WEBPAGETEST Ham, Ficky; Musdar, Izmy Alwiah; Hasniati
KHARISMA Tech Vol 19 No 1 (2024): Jurnal KHARISMATech
Publisher : STMIK KHARISMA Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55645/kharismatech.v19i1.413

Abstract

The Mind & Soul website is a website-based application developed to facilitate users in ordering and processing mental health counseling online with a counselor which can be accessed via the link https://mindandsoulofficial.com/. The performance of the Mind & Soul website requires detailed analysis to find out what the website's performance is like and what deficiencies the Mind & Soul website has. The purpose of this research is to test the performance of the Mind & Soul website using GTMetrix and WebPageTest so as to find out the performance details. Performance testing on the Mind & Soul website will be carried out using two tools, namely GTMetrix and WebPageTest. The collection method was carried out using the observation method, in which the researcher tested directly on the Mind & Soul website using GTMetrix and WebPageTest tools. Based on the results of the Mind & Soul website performance test on GTMetrix, all desktop and mobile website pages got grade A which means very good, while the results of the performance test using WebPageTest showed that the speed of all desktop and mobile pages is not bad and some pages still need to be improved from usability and ductility factors.
Pemanfaatan Enkripsi Data Berbasis Algoritma Blowfish Pada Aplikasi Password Manager RememberMe! Suryanto, Christian Rayhan; Fajar, Mohammad; Hasniati
KHARISMA Tech Vol 19 No 1 (2024): Jurnal KHARISMATech
Publisher : STMIK KHARISMA Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55645/kharismatech.v19i1.421

Abstract

Password manager RememberMe merupakan salah satu aplikasi yang dapat digunakan oleh penggunanya untuk mengelola dan melindungi kata sandi dari berbagai aplikasi di internet. Sebagai aplikasi yang mengelola data yang sangat penting, tentunya diperlukan tambahan lapisan keamanan di sisi data pengguna yang tersimpan di basis data. Oleh karena itu penelitian ini bertujuan untuk memanfaatkan algoritma blowfish dalam melakukan enkripsi data pengguna yang akan disimpan di basis data dan meng-evaluasi kinerja aplikasi. Pengumpulan data dilakukan dengan mengevaluasi proses enkripsi dan dekripsi serta observasi kinerja aplikasi password manager RememberMe! terhadap aspek waktu tanggap, ukuran data hasil enkripsi, dan pemakaian bandwitdth. Hasil evaluasi menunjukkan data pengguna khususnya password berhasil dienkrip kemudian disimpan ke basis data serta berhasil didekrip ketika digunakan kembali oleh pengguna. Selain itu pengujian waktu tanggap rata-rata berada dibawah 1 detik, ukuran data enkripsi relatif sebesar 22 byte dan total data bandwidth sent yaitu relatif kurang dari 5 MB.
Implementasi System Modeling Language pada Pemodelan Aplikasi Reparation Panjiwinata, Sampurna; Fajar, Mohammad; Hasniati
KHARISMA Tech Vol 18 No 2 (2023): KHARISMATech Journal
Publisher : STMIK KHARISMA Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55645/kharismatech.v18i2.422

Abstract

Pada proses pengembangan perangkat lunak, developer umumnya menggunakan Unified Modeling Language (UML) sebagai bahasa untuk memodelkan dan merancang sistem. Saat ini telah dikembangkan versi yang lebih luas dari UML yaitu System Modeling Language (SysML) yang menyediakan sejumlah perbaikan, salah satunya yaitu alokasi untuk spesifikasi kebutuhan melalui requirement diagram. Meskipun demikian, SysML masih banyak digunakan untuk memodelkan sistem-sistem tertanam dibanding pemakaiannya pada sistem informasi atau jenis aplikasi komputer yang lebih luas. Oleh karena itu, penelitian ini bertujuan untuk mengimplementasikan SysML pada sistem Reparation. Aplikasi Reparation merupakan aplikasi yang menyediakan jasa servis secara online. Aplikasi ini diharapkan dapat membantu masyarakat dalam mencari dan memesan jasa servis dengan mudah dan cepat tanpa harus ke bengkel. Wawancara dan studi literatur dilakukan untuk memperoleh kebutuhan fungsional dan non-fungsional sistem yang didefinisikan dalam tabel spesifikasi kebutuhan. Sementara pengujian sistem dilakukan untuk menguji sejumlah fitur contoh yang dipilih. Dari studi yang telah dilakukan menunjukkan bahwa SysML dapat diimplementasikan pada pemodelan aplikasi Reparation. Diagram-diagram yang dihasilkan yaitu activity diagram, parametric diagram, requirement diagram, use case diagram, dan sequence diagram. Parametric diagram digunakan untuk menentukan batasan-batasan berupa atribut dari fungsionalitas pada sistem, sementara requirement diagram digunakan untuk menganalisis kebutuhan fungsional dan non-fungsional sistem seperti Daftar Akun, Pesan Jasa Servis, dan Perangkat Pengguna. Termasuk hubungan dari requirement diagram ke use case diagram dan parametric diagram dapat ditelusuri. Hasil pengujian black box menunjukkan hasil output berhasil dijalankan dengan baik terhadap beberapa fungsionalitas yang diuji seperti Daftar Akun, Pesan Jasa Servis, dan Tambah Pesanan Jasa Servis.
KLASIFIKASI CITRA KOMPONEN SEPEDA MOTOR MENGGUNAKAN ALGORITMA CNN DENGAN ARSITEKTUR MOBILENET Anggarkusuma, Renaldi; Alwiah Musdar, Izmy; Hasniati
KHARISMA Tech Vol 19 No 2 (2024): Jurnal KHARISMATech
Publisher : STMIK KHARISMA Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55645/kharismatech.v19i2.430

Abstract

Image recognition is a sub-category of computer vision technology used to classify images into specific categories. The purpose of this research is to create a CNN model with the MobileNet architecture to classify motorcycle component images and measure the accuracy level produced by the model. The creation of the deep learning CNN model uses the TensorFlow library. The initial data for the training process consists of 50 images divided into 5 categories: spark plugs, brake pads, bearings, regulators, and roller housings. These data undergo augmentation techniques such as rotation, shifting, and image flipping. This research successfully developed a CNN model using the MobileNet architecture that can classify motorcycle component images. The MobileNet model was tested using 20 test data, with 10 of them subjected to a motion blur filter. The test results showed that the accuracy performance of the CNN model with the MobileNet architecture in classifying motorcycle component images is 85%, and the accuracy of image classification did not significantly decrease when the motion blur filter was applied.
Implementation of Grey Box Testing Technique in Testing the F1Math Application Ang, Vincent; Rahman, Syaiful; Hasniati
KHARISMA Tech Vol 20 No 2 (2025): KHARISMATech Journal
Publisher : STMIK KHARISMA Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55645/kharismatech.v20i2.575

Abstract

The F1Math application was developed to assist students in learning mathematics through an interactive concept inspired by Formula 1 racing. This study aims to evaluate the effectiveness of the grey box testing technique in testing the F1Math application. The testing method used is grey box testing with a Regression testing approach, combining an analysis of the application's internal structure and observation of its external behavior. The testing process began with analyzing the system specifications and source code, followed by unit Testing, integration Testing, and regression Testing. User simulations across various game levels were also conducted. The results indicate that the grey box testing technique is effective in detecting bugs during the early stages of development. This approach accelerates the debugging process and enhances application stability, especially in critical areas such as gameplay features and mathematical calculations. In conclusion, the implementation of the grey box testing technique significantly contributes to improving the quality of the F1Math application. This approach successfully combines the strengths of code-based and user-behavior-based Testing, resulting in a more reliable and efficient application.