Claim Missing Document
Check
Articles

Found 19 Documents
Search

A Simulation of Student Study Group Formation Design Using K-Means Clustering Putra, Yudistira Ardi Nugraha Setyawan; Margono, Hendro
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 5 No. 2 (2025): MALCOM April 2025
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v5i2.1795

Abstract

This research focuses on developing a simulation model for forming student study groups using an enhanced K-Means algorithm, addressing the challenge of optimizing group dynamics to improve learning outcomes. By analyzing the effectiveness of the formed study groups through RMSE (Root Mean Square Error) after dimensionality reduction with various regression models—including Linear Regression, Ridge Regression, Lasso Regression, Elastic Net, Random Forest Regressor, Gradient Boosting Regressor, and XGBoost Regressor—we aim to provide educators with a robust tool for assessing group configurations. The study identifies four distinct clusters, revealing that "Previous_Score" and "Attendance" are critical variables, achieving a highest Silhouette Score of 0.64 with five selected features. The ridge regression model also yielded a low RMSE of 0.045, explaining 72.39% of the variance in "Exam_Score." The findings suggest that targeted interventions tailored to each cluster—yellow, purple, blue, and green—can enhance academic outcomes by addressing specific student needs. This data-driven approach optimizes group dynamics and fosters a more inclusive learning environment, enhancing academic performance and cultivating essential social skills. The study underscores the potential of machine learning techniques in education and suggests avenues for future research into alternative clustering methods and their long-term impact on student engagement and success.
Instructor Performance Analysis in Educational Contexts Based on Learner Evaluation Data: Integration of Clustering and Predictive Model Lestari, Santi Dwi Desy; Margono, Hendro
MUKADIMAH: Jurnal Pendidikan, Sejarah, dan Ilmu-ilmu Sosial Vol 9, No 2 (2025)
Publisher : Prodi Pendidikan Sejarah Fakultas Keguruan dan Ilmu Pendidikan Universitas Islam Sumatera

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30743/mkd.v9i2.11772

Abstract

This study aims to analyze instructor performance in educational contexts by classifying instructors based on learner evaluation data through the K-Means clustering algorithm and developing a predictive model to support effective and targeted instructor development programs. The data were derived from learners’ evaluations of instructors, covering aspects such as discipline and professionalism, mastery of subject matter, and pedagogical skills in delivering content. The results indicate that k=3 is the optimal cluster, producing three categories: Superior Instructor, Potential Instructor, and Developing Instructor. Furthermore, the predictive model demonstrates that the Naive Bayes algorithm outperforms XGBoost in performance prediction, achieving higher accuracy, recall, precision, and F1-scores. The integration of clustering and prediction proves effective in enabling faster, objective, and data-driven decisions for instructor development. These findings provide significant implications for educational institutions in establishing adaptive and sustainable systems of instructor evaluation and management.‎
PELATIHAN PENULISAN ARTIKEL BUKU BUNGA RAMPAI SEBAGAI PENINGKATAN KINERJA PUSTAKAWAN DI BALAI LAYANAN PERPUSTAKAAN DAERAH ISTIMEWA YOGYAKARTA Tri Atmi, Ragil; Abdul Halim, Yunus; Margono, Hendro; Srimulyo, Koko; Mutia, Fitri; Sugihartati, Rahma; Gunarti, Endang; Yuadi, Imam; Prasetyo Yuwinanto, Helmy; Niken Ayu Pratiwi, Bertha
Martabe : Jurnal Pengabdian Kepada Masyarakat Vol 8, No 8 (2025): MARTABE : JURNAL PENGABDIAN KEPADA MASYARAKAT
Publisher : Universitas Muhammadiyah Tapanuli Selatan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31604/jpm.v8i8.%p

Abstract

 Publikasi artikel menjadi salah satu unsur peningkatan kompetensi dan kinerja bagi para Pustakawan di Indonesia. Berdasarkan Permenpan-RB Nomor 9 Tahun 2014, pustakawan akan mendapatkan nilai tambah pada angka kredit mereka setelah berhasil melakukan publikasi karyanya. Namun, dalam menulis publikasi artikel buku bunga rampai, pustakawan masih memiliki keterbatasan. Kondisi tersebut juga terjadi di Balai Layanan Perpustakaan Daerah Istimewa Yogyakarta (BLPDIY). Keterbatasan dalam penulisan karya tulis ilmiah yang terjadi di Balai Layanan Perpustakaan Daerah Istimewa Yogyarakarta (BLPDIY) disebabkan oleh rendahnya motivasi, kurangnya pengalaman, dan kurangnya manajemen waktu. Departemen Informasi dan Perpustakaan Universitas Airlangga memberikan edukasi yang membantu pustakawan mengatasi kendala tersebut. Tujuan dari kegiatan ini antara lain, yang pertama meningkatkan pengetahuan dan kemampuan pustakawan dalam menulis dan mempublikasikan karya tulis ilmiah kedua, meningkatkan pengetahuan pustakawan dalam mencegah dan mendeteksi plagiarism dalam penulisan karya tulis ilmiah, ketiga, dapat membuat karya tulis ilmiah yang berkualitas, keempat, karya tulis ilmiah terpublikasi, kelima, produktivitas pustakawan semakin meningkat. Kegiatan Pengabdian Masyarakat ini berakhir dengan lancer dan menghasilkan sebuah buku bunga rampai yang ditulis secara kolaboratif dengan pustakawan dari Balai Layanan Perpustakaan Daerah Istimewa Yogyakarta (BLPDIY), dosen, dan Mahasiswa Program Studi Ilmu Informasi dan Perpustakaan.
DIGITAL SELLING SKILL PADA PEDAGANG BUNGA DI PASAR BUNGA TENGGILIS MEJOYO SURABAYA Margono, Hendro; Sugihartati, Rahma; Yuadi, Imam; Srimulyo, Koko; Tri Atmi, Ragil; Dama Putri, Kania; Maulidah, Nofiyah; Vivia Adriyanti, Elvetta
Martabe : Jurnal Pengabdian Kepada Masyarakat Vol 8, No 7 (2025): MARTABE : JURNAL PENGABDIAN KEPADA MASYARAKAT
Publisher : Universitas Muhammadiyah Tapanuli Selatan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31604/jpm.v8i7.2803-2812

Abstract

Pedagang bunga di Pasar Tenggilis Mejoyo, Surabaya, mengalami penurunan penjualan akibat ketatnya persaingan, terutama dengan pedagang yang telah memanfaatkan media digital. Sebagian besar pedagang masih menggunakan metode penjualan konvensional dan belum optimal dalam menggunakan platform digital untuk meningkatkan penjualan. Pengabdian masyarakat ini bertujuan untuk meningkatkan kemampuan pedagang bunga di pasar tersebut dalam menggunakan media digital sebagai sarana penjualan. Kegiatan pengabdian ini meliputi sosialisasi penggunaan media sosial, pendampingan strategi penjualan digital, serta monitoring dan evaluasi hasil pelatihan. Dari 17 pedagang, hanya 9 yang berhasil mendapatkan sosialisasi, dengan sebagian besar masih enggan beralih ke metode digital karena kekhawatiran terhadap keamanan bertransaksi online. Hasil kegiatan ini menunjukkan peningkatan keterampilan digital selling bagi sebagian pedagang, meskipun tantangan dalam partisipasi pedagang masih cukup besar.
Predictive Sales Analysis in Coffee Shops Using the Random Forest Algorithm Windrasari, Shella Norma; Margono, Hendro; Putra, Yudistira Ardi Nugraha Setyawan
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 5 No. 3 (2025): MALCOM July 2025
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v5i3.2023

Abstract

The coffee shop industry has experienced significant growth, evolving into a highly competitive marketplace demanding specialty coffee and personalized experiences. While data-driven strategies are crucial for optimizing operations, many owners still struggle to effectively leverage their sales data to understand dynamic customer behavior and enhance decision-making. Addressing this gap, this study explores the application of machine learning (ML) techniques, specifically the Random Forest Regressor model, to predict sales performance within the coffee shop business environment. By analyzing factors such as transaction timing, store location, product type, and day of the week, this research aims to uncover patterns that can enhance inventory management and customer engagement. The Random Forest model was evaluated through cross-validation, yielding a mean Mean Squared Error (MSE) of 80.97, which indicates moderate predictive accuracy and represents an improvement over traditional forecasting methods commonly employed in the industry. Feature importance analysis revealed that Premium Beans is the most influential predictor, followed by seasonal trends (month), time of day, and weekend sales patterns. These findings underscore the importance of incorporating temporal and contextual factors into forecasting models. 
Analisis Pengelompokan Laporan Panggilan untuk Perencanaan Respons Berbasis Data: Clustering Analysis of Call Reports for Data-Driven Response Planning Cahyani, Retno Tri; Yuadi, Imam; Margono, Hendro
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 5 No. 4 (2025): MALCOM October 2025
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v5i4.2168

Abstract

Setiap tahun, Call Center 112 Kabupaten Sidoarjo menerima ribuan laporan dari masyarakat, yang mencakup berbagai kejadian seperti kebakaran, kecelakaan lalu lintas, darurat medis, kabel menjuntai, pohon tumbang, dan masalah PJU. Penelitian ini menganalisis 6.207 laporan berfokus pada koordinat lokasi kejadian dengan tujuan untuk mengelompokkan pola spasial laporan sehingga dapat mendukung tata Kelola pelayanan publik yang lebih responsif. Untuk mencapai tujuan tersebut digunakan dua algoritma pembelajaran yaitu K-Means dan K-Medoids. Metode Elbow digunakan untuk menentukan jumlah klaster (k=3). Metode ini menunjukkan titik optimum ketika nilai inertia mulai menurun secara linier. Analisis menggunakan Google Colab dan ada dukungan pustaka untuk visualisasi seperti scikit-learn, pyclustering, dan matplotlib. Hasil visualisasi menunjukkan bahwa K-Medoids membentuk klaster yang lebih terstruktur secara geografis, sedangkan K-Means menghasilkan klaster yang tumpang tindih. Silhouette Score 0,479, yang lebih tinggi dari K-Means hanya 0,193, K-Medoids terbukti lebih unggul dalam membentuk klaster yang kompak dan konsisten. K-Medoids berhasil mengelompokkan wilayah yang rawan insiden (Waru, Gedangan) dan wilayah infrastruktur dominan (Sidoarjo, Candi) ke dalam klaster yang sesuai secara spasial. Analisis ini mengidentifikasi fitur tiap klaster berdasarkan jenis laporan, mulai dari darurat medis hingga masalah PJU. Penemuan ini berguna untuk mendukung alokasi sumber daya dan layanan publik yang lebih efisien saat membangun kota pintar.
The Urgency of Disability Services in the Library with Literature Review Rifa, Syafira Dila; Rosyani, Widha; Margono, Hendro
Pustakaloka Vol. 16 No. 1 (2024)
Publisher : IAIN Ponorogo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21154/pustakaloka.v16i1.8524

Abstract

Penyandang disabilitas mengalami keterbatasan yang membuat akses ke berbagai layanan, termasuk di perpustakaan, menjadi sulit. Untuk itu, diperlukan layanan khusus di perpustakaan agar mereka dapat mengakses informasi dengan lebih mudah. Peraturan Pemerintah Nomor 23 Tahun 2014 mengatur pelaksanaan Undang-Undang Nomor 43 Tahun 2007 tentang perpustakaan, yang menekankan pentingnya layanan non-diskriminatif bagi penyandang disabilitas. Penelitian ini bertujuan mengatasi kurangnya artikel jurnal mengenai layanan disabilitas di perpustakaan dengan menggunakan metode literature review, yang melibatkan pencarian jurnal terkait di Google Scholar. Data dari jurnal-jurnal tersebut menunjukkan bahwa beberapa perpustakaan masih memiliki layanan disabilitas yang kurang memadai, sementara yang lain sudah mulai memperhatikan pentingnya keamanan dan kenyamanan bagi penyandang disabilitas. Artikel ini membahas pengenalan kebutuhan pengguna disabilitas, pelatihan petugas perpustakaan, aksesibilitas fasilitas, dan inovasi digital untuk aksesibilitas universal di era digital bagi penyandang disabilitas.
EMOTIONAL INTELLIGENCE: A GUIDE TO CRITICAL INFORMATION LITERACY IN THE DIGITAL AGE Rahma, Nadhifia Shabrina Nur; Inriani, Sefania Wenny Eka; Margono, Hendro
Pustakaloka Vol. 17 No. 1 (2025): Pustakaloka
Publisher : IAIN Ponorogo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21154/pustakaloka.v17i1.10294

Abstract

The digital age has created an overwhelming amount of information, making it very important to know how to use it. This study seeks to investigate the influence of emotional intelligence on the enhancement of these skills. This study employed a Systematic Literature Review (SLR) methodology to examine four scientific articles published from 2020 to 2024, sourced from the Google Scholar database. The main findings indicate that individuals with high emotional intelligence tend to be more capable of managing emotions when faced with contradictory information, are more open to diverse perspectives, and show improvements in digital literacy and learning outcomes. These findings indicate that cultivating emotional intelligence may serve as an effective strategy for improving critical information literacy. This analysis leads to the conclusion that emotional intelligence is crucial for promoting logical decision-making, preventing the dissemination of false information, and successfully navigating the complexity of digital information.
ANALISIS IMPLEMENTASI PERPUSTAKAAN DESA BERBASIS INKLUSI SOSIAL DAN DAMPAKNYA BAGI MASYARAKAT: KAJIAN NARRATIVE LITERATURE REVIEW Supriyatno, Hary; Margono, Hendro
Pustakaloka Vol. 17 No. 1 (2025): Pustakaloka
Publisher : IAIN Ponorogo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21154/pustakaloka.v17i1.11749

Abstract

Social inclusion is one of the priority programs initiated by the National Library of Indonesia, serving as a strategic effort to improve the quality of life and community welfare through the transformation of the library’s role. Libraries are no longer limited to managing and providing collections but are required to become centers for access to information sources and  community empowerment activities. Library transformation can be realized through the provision of appropriate infrastructure, facilities, human resources, and technology that meet community needs. The implementation of social inclusion in libraries requires a reference model, particularly for village libraries that need an applicable and contextually relevant framework. The study aims to identify conceptual models for implementing social inclusion in village libraries and to examine the impacts synthesized from existing literature, so that they may be adapted or adopted by other libraries to enhance the community‘s quality of life and welfare. The research employs a narrative literature review, conducted on four peer-reviewed articles discussing social inclusion in village libraries obtained through Publish or Perish and selected based on journal accreditation and citation impact. The analysis reveals four key elements in the implementation of social inclusion in village libraries: (1) collections aligned with community needs, (2) user-oriented services, (3) competent human resources, and (4) strong collaborative partnerships. The impacts synthesized from the literature include accelerated village development, enhanced community competence and welfare, and the transformation of libraries into centers of information and productive community engagement. The main challenges in implementation include uneven utilization of information technology, dependency upon external cooperation programs, and limited community participation.