Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Journal of Artificial Intelligence and Engineering Applications (JAIEA)

Sentiment analysis to classify TikTok Shop Users on Twitter with Naïve Bayes Classifier Algorithm Lestari, Ayu; Ade Irma Purnamasari; Agus Bahtiar; Edi Tohidi
Journal of Artificial Intelligence and Engineering Applications (JAIEA) Vol. 4 No. 2 (2025): February 2025
Publisher : Yayasan Kita Menulis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59934/jaiea.v4i2.748

Abstract

Advances in information technology have facilitated the use of social media as an e-commerce platform, with TikTok Shop enabling in-person transactions. This research addresses the gap in understanding user perceptions of TikTok Shop through sentiment analysis on Twitter. Sentiment classification is performed using the Naïve Bayes Classifier algorithm. The dataset consists of 1,907 Indonesian tweets, collected from January 2023 to July 2024, and processed using RapidMiner in the Knowledge Discovery in Database (KDD) framework. The preprocessing stages include data cleaning, normalization, tokenization, stopword removal, and stemming. To overcome data imbalance, Synthetic Minority Oversampling Technique (SMOTE) was applied. The model achieved 93.98% accuracy, with balanced precision and recall for positive, neutral, and negative sentiments. The sentiment distribution among TikTok Shop users on Twitter was 35.5% positive, 35.5% negative, and 29.0% neutral. This research provides insights into consumer behavior on social media and emphasizes the importance of sentiment analysis to increase user engagement and understand market perception. This research is expected to provide information to platform developers and businesses looking to improve TikTok
K-Means Algorithm for Grouping Models of Dengue Fever Prone Areas in Cirebon City Aida Safitri; Ade Irma Purnamasari; Agus Bahtiar; Edi Tohidi
Journal of Artificial Intelligence and Engineering Applications (JAIEA) Vol. 4 No. 2 (2025): February 2025
Publisher : Yayasan Kita Menulis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59934/jaiea.v4i2.834

Abstract

Dengue hemorrhagic fever (DHF) is an infectious disease transmitted through the Aedes aegypti mosquito. DHF cases in Cirebon City show a significant increase every year. This study aims to classify dengue prone areas based on case data per health center in 2020-2024 obtained from the Cirebon City Health Office. The method used is the K-Means algorithm with the Knowledge Discovery in Database (KDD) approach, which includes data selection, preprocessing, data transformation, data mining, evaluation, and knowledge. Evaluation using Davies-Bouldin Index (DBI) showed optimal results at k = 6 with a DBI value of -0.445. The clustering results produced six clusters: cluster 5 (437 dengue cases in 34 health centers) showed high risk; cluster 0 (244 cases), cluster 2 (129 cases), and cluster 3 (279 cases) showed medium risk; while cluster 1 (69 cases) and cluster 4 (86 cases) showed low risk. This study shows that the K-Means algorithm is effective in identifying DHF risk distribution patterns and provides a strategic basis for the Cirebon City Health Office to prioritize interventions and develop more effective prevention strategies.
Clustering Analysis of Administrative Service Types Using K-Means (Study Case: Village bojongsalam) Wafiq Azizah; Ade Irma Purnamasari; Agus Bahtiar; Kaslani
Journal of Artificial Intelligence and Engineering Applications (JAIEA) Vol. 4 No. 2 (2025): February 2025
Publisher : Yayasan Kita Menulis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59934/jaiea.v4i2.867

Abstract

Advances in information technology present significant opportunities for the improvement of public services, especially in relation to the administrative functions of Bojongsalam Village. Reliance on traditional methods often leads to inefficiencies and inaccuracies in administrative processes. This research uses the K-Means algorithm to categorize administrative service data based on service type, document number, printing date, and accompanying remarks. Utilizing the Knowledge Discovery in Databases (KDD) framework, the analysis includes data selection, pre-processing, transformation, and clustering analysis conducted through RapidMiner software. The dataset consisted of 718 administrative records that had undergone a rigorous cleaning process, including attribute normalization. The analysis resulted in an optimal Davies-Bouldin Index (DBI) value of -0.498 at K = 4, with each cluster representing a different service utilization pattern. The issuance of Family Cards (KK) and Birth Certificates showed higher demand compared to other available services. This classification promotes workload optimization, fair resource allocation, and formulation of effective operational strategies. The application of the K-Means algorithm demonstrated its effectiveness in data clustering and made a significant contribution to technology-based administrative management. The findings lay a basic framework for addressing the needs of the community in a timely manner.