p-Index From 2021 - 2026
6.692
P-Index
This Author published in this journals
All Journal Dinamik Teknika Jupiter PIKSEL : Penelitian Ilmu Komputer Sistem Embedded and Logic Explore: Jurnal Sistem Informasi dan Telematika (Telekomunikasi, Multimedia dan Informatika) Jurnal Informatika Jurnal Informatika Proceeding International Conference on Information Technology and Business International conference on Information Technology and Business (ICITB) Jurnal SIMADA (Sistem Informasi dan Manajemen Basis Data) International Journal of Artificial Intelligence Research Jurnal CoreIT Prosiding Seminar Nasional Darmajaya Jurnal Sinergitas PkM & CSR Jurnal Teknologi Informasi MURA Jurnal Informasi dan Komputer IJISCS (International Journal Of Information System and Computer Science) Jurnal Tekno Kompak Building of Informatics, Technology and Science JPGMI (Jurnal Pendidikan Guru Madrasah Ibtidaiyah Al-Multazam) Jurnal Komunitas: Jurnal Pengabidian Kepada Masyarakat Journal of Computer Networks, Architecture and High Performance Computing Jurnal Teknik Informatika (JUTIF) Jurnal Pengabdian kepada Masyarakat Jurnal Sains Teknologi dan Sistem Informasi Jurnal Informatika Teknologi dan Sains (Jinteks) Jurnal Pengabdian Mandiri NEAR: Jurnal Pengabdian kepada Masyarakat SIENNA Jurnal Indonesia Sosial Sains Jurnal Ilmu Komputer, Sistem Informasi, Teknik Informatika (JILKOMSITI) Jurnal Ilmiah ESAI Jurnal Teknologi Informasi Mura Scientica: Jurnal Ilmiah Sains dan Teknologi Darma Diksani: Jurnal Pengabdian Ilmu Pendidikan, Sosial, dan Humaniora International Journal of Computer Technology and Science Journal of Software Engineering And Technology IJISCS (International Journal of Information System and Computer Science)
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : SIENNA

The Public Sentiment Analysis on the Implementation of the Independent Curriculum through YouTube Comment Data Using K-Nearest Neighbors and Naïve Bayes Classification Algorithms. rinaldi rinaldi; Sutedi
Sienna Vol 5 No 1 (2024): Sienna Volume 5 Nomor 1 Juli 2024
Publisher : LPPM Universitas Muhammadiyah Kotabumi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47637/sienna.v5i1.1324

Abstract

This research aims to conduct a public sentiment analysis on the implementation of the Merdeka Curriculum through YouTube comment data using the K-Nearest Neighbors (K-NN) and Naïve Bayes classification algorithms. The Merdeka Curriculum is an educational program launched by the Indonesian government in 2020 to improve the quality of education in Indonesia. The research method used is quantitative, with stages including data collection, data preprocessing, and sentiment classification modeling using the K-NN and Naïve Bayes algorithms. The research results show that the K-NN algorithm performs better than the Naïve Bayes algorithm in classifying public sentiment towards the implementation of the Merdeka Curriculum. The K-NN algorithm with the best k value of 11 achieved an accuracy of 79.70%, precision of 77.20%, recall of 79.70%, and an f1-score of 77.65%, with an AUC value of 0.91, indicating excellent classification performance. In contrast, the Naïve Bayes algorithm achieved an accuracy of 53.82%, precision of 72%, recall of 53.82%, an f1-score of 59%, and an AUC value of 0.75, which falls into the fair category.